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3.1 Transfer Functlon |

Transfer function: the basic and the most important concepts
for classical automatic control .

The transfer function of a linear, stationary system is defined as
the radio of the Laplace transform of the output variable to the
Laplace transform of the input variable, with all initial conditions
assumed to be zero.

If Input--r(t), output--c(t). Transfer function was define as:

H(s) = Lo _ C6)
L[r()] R(s)
where, C(s)=L[c(t)]|——Laplace transform for output
R(s)=L[r(t)]—Laplace transform for input
S0, we can get:
C(s) =R(s)H(s)

The time response of control system c(t) equals the inverse
Laplace transform of C(s) :

c(t) =[C(s)]= L' [R(sS)H(S)] 3
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3.1 Transfer Functlon

In general, the time domain mathematical model of the system-
Differential Equation is:
n n-1
n d cgt)+an1d (n:(lt)
dt dt

dmr(t) d™r(t) ,

dL 10l ————— L 5a500 _|_b
m-1 dtml

dr(tt) e bur(t)

...... d()_|_a (‘[) b

where, a,, bj(i =0,1,2,....... n; j=0,1,2....... m) are real number ,
which is determined by the system structure parameters. The
Laplace transformation are used to both sides :
a s"C(s)+a,,s""C(s)+----- a,sC(s) +a,sC(s)
=b_s"R(s)+b_,s"R(S)+---- b,SR(s)+ b,R(s)
So, the control system transfer function of general expression:
m m-1
G(s) = C(s) _ b.s"+Db. S _ + b,s+b,
R(s) a,ss"+a,,S"  +:-- a,S+a,
is):K (s+z,)(s+z,)---- (s+z_)
R() " (s+p)(s+p,)-(5+p,) 4

G(s)=
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3.1 Transfer Function

Transfer Functions of Systems

1. Open loop transfer function

R() + _E(S) C(s)
G(s) >~

B(s)‘
H(s) +—

Definition: the ratio of feedback signal to error signal

B() = G(s)H(s)

E(s)
Conclusion: Open loop transfer function is equal the

transfer function G(s) in forward path time to transfer
function H(s) in feedback path. 5



The general situation :

m m-1
b.s"+b S 4+ b,s+b,

n-1

G(s)H(s)=——
as"+a, S" e a,s+a,

u n
KII(r;s+1II(r 2+ 20 T S+1)

s LI(T,s + D IL(TEs? + %, Tys+1)

Where, K- the open loop amplification coefficient for closed-
loop system (also called the open loop magnification or open-
loop gain), is the important parameter to influence the system

performance.
when the feedback transfer function H (s) =1, the open loop
transfer function is equal to forward transfer function, that is

G(s).



3.1 Transfer Functlon
2. Closed-loop Transfer Function
Definition: the transfer function of the output

and input when main feedback loop Is
connected, usually represented by ®(s).

()~ SO __ G0
R(s) 1+ G(s)H(s)
3. Disturbance Transfer Function

Disturbance
signal N (S)

_I_
C
RE) +>®E(S)> G,(s) —+>(§—> G, (s) (S)>
B(s) T )

Disturbance signal : outside of the system input function.

X A4S
AOT

E4& SHANGHAI JI

H(s)
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3.1 Transfer Function

When input R (s) =0

Cn(s) G,(s)
NG)  1+G, ()G, (S)H(s)

we hypothesis :

(DN(S) -

G1(5)G, (S)H(s) o1 :> CI\IN—((SS)) 50
The disturbances signals can be restrained.

If disturbance signal N (s) =0
Cr(s) G, (s)G,(8)
(DR(S): —
R(S)  1+G,(s)G,(s)H(s)

_ Cr(s) 1
we hypothesis : | Gi(8)G2(8)H() | >>1 :> F?(s) “H(s)

It shows that the transfer function of closed-loop system only
has relationship with H (S) on, is not depend on G;(s),G,(s)

>>1 ‘ G1(S)H(s)

8



When R (s) « N (s) are not equal to
zero, the output C(s) is defined as:

C(s) =Cr(s)+Cy(s)

GGy, Gy08)

1+G,(5)G,(OH()  1+G,(5)G,(S)H(S)
G, (5)

" 1+G,(5)G, (SH()

N(s)

[G;(S)R(S) + N(s)]
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3.1 Transfer fu

5. Error Transfer function
a) Error transfer function with reference signal
If N(s)=0, then

E(s) _ R(s)-C(s)H(s) 1 C(s)H(s)

R(S) R(S) R(S)

~_G1(5)Ga(s)H(s) 1
1+G1(S)G2(s)H(s) 1+G1(s)G,(s)H(s)

that is so-called Error Transfer function.

10



3.1 Transfer function

b) Error transfer function with disturbance signal :

E() _ —Gy(s)H(s)
N(S)  1+G1(5)G (S)H(S)

c) Total Error with R(s) and N(s)

E(S) _ 1 R(S) B Gz (S) H (S)
1+ Gy (s)G,(s)H(s) 1+G1(s)G2 (s)H(s)

N(s)

11
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3.1 Transfer Function

Summary for Transfer Function :

1) the transfer function is the system mathematical model (or link)
In the complex number field, is'the system characteristics
de?crltptlon, reflect the linear time-invariant input of the system and
output.

2) the transfer function depends only on the structural parameters
of thte system itself, and have no relationship with system outside
input .

3) the transfer function is the complex variable S of the rational real
fraction function, that is m<n ( m, n are the highest order times of
molecular and denominator)

@ If the input for the unit pulse function , thatis r(t)=9(t),
(s)=L[r(t)]=1, so
c(t) = L' [R(S)G(s)] = L [G(s)]

This shows that at this time of the system C(t) and transfer
function G (s) have single value correspondlnﬁ relation, they can
be used to characterize dynamic behavior of the system.

5) closed loop system transfer function G (s) and make the

denominator for O, that is the characteristics of the system
equation.

12
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3.2 Block Diagram

Graph model- Block Diagram

Graph model have prominent advantage

* Intuitive

« Vivid
Graph model is the most important means in automatic
control (AC)

Graph model is always used to analyze complex system in
engineering.
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3.2 Block Diagram

The Block Diagram Model
—which consists of block, arrow, Differencing junction and pickoff point.

Differencing junction’

Forward
j 2> path —_—>

Input Control
CONTROLLER si gnal

Measured output

TRANSDUCER

Pickoff point

F
< p:tel«:iback <z

Generalized feedback control system
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3.2 Block Diagram Model

& A block diagram represents the flow of information
and the function performed by each component in the
system.

Oy Arrows are used to show the direction of the flow of
Information.

& The block represents the function or dynamic
characteristics of the component and is represented by
a transfer function.

& The complete block diagram shows how the functional
components are connected and the mathematic
equations that determine the response of each
component.



= >y X 4
/i% /ig’)\ﬁjff—z
NG ERSI

18] SHANGHALI JIAO TO

3.2 Block Diagram
1. Basic Element of Block Diagram
_o . 0, RO . RO-CEH RE [ C6
R(s) . C(s) _
C(s) C(s)

(@) (b) (©) (d)

(a) Signallines ; (b) Branch point (also called pickoff point) ;
(c) comparison points (also called summing point) ; (d) block ;
The system block diagram combine diagram and
mathematical equations together, it describe the
comprehensive characteristics for a system.
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3.2 Block Diagram

iy (t) Ry i2 () R,

. 1, (s)
EX . T—LDT—»:I——T (5) IF % 1
Uy (t) - -

(o) —C, G~ <)
cl> l ;J;. Uy (s)
l1(S) + 1 Uq(S)
— —> "~ a se———
-, _ 1
=1,(t)
& 15(s)
S i i Us(s) 1 1,(s)
ul(t)=C—j[|1(t)—|2(t)]dt 1) ¢ L )
1 —
C
u, () —c(t) _. 0 | (s)
- 15(8) 1 C(s)
2 R EC)
C,s

0= Cizj 2 (0t (b) 17
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3.2 Block Diagram

Assemble all block diagrams above:

R(s) + 1 |+ 1 | 1 1 C(s)

How can simplify this diagrams?

18



2. Algorithm of Block Diagram::

(1). series principle

X4(s) X5(s) X5(s)
—>| G [ G >

Proof:

Gl(s)zi((z—g G, (s)

_ X4(s)
X, (9)

X0 X, Xa(6)
PO X0 X "X, OG0

conclusion: G(s) is equal to the total series
every link of the transfer function of the
product G(s) = G,(s) G,(s)...... G,(s)

19



3.2Block Dlagram |

(2). Parallel principle 5,
R(s) gl s PR
I
| Gy(s)
Proof: X
amy } _ SHJ‘JWSD(S elrrors ¢
O Re T R® RO RO
=G,(s)+G,(s)

conclusion: the transfer function of parallel link is
equal to the sum of all the transfer function .

G(S) = G,(S) + G,(S) +...... + G, (s) R
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3.2 Block Diagram

3\ Feedback principle R(s) .+ EC) Cs)

— G(s)

B(s) |~

H(s) |«

Here the two blocks are connected in a feedback arrangement
so that each feeds into each other. When the feedback B(s) is
subtracted, we call it Negative feedback.

Note: negative feedback is usually required for system stability.
Proof:

C(s) = G(s)E(s) = G(s)[R(s) - B(s)] :> Cs) _  G(s)
= G(s)[R(s) —H(s)C(s)] R(s) 1+G(s)H(s)
The transfer function for Negative feedback

Conclusion: The gain of a single-loop negative feedback
system is given by the forward gain divided by the sum of 1
plus the loop gain. 21




3.2 Block Diagram

When the feedback is added R(s).  E(S) cEs)
instead of subtracted, we call it > G(s) >
Positive feedback. In this case, B(s) T+_

the gain is given by the forward H(s)

gain divided by the sum of 1
minus the loop gain.

C(s) = G(s)E(s) = G(s)[R(s)+ B(s)]

= G(s)[R(S)+H(s)C(s)] C(s) = G(S)[R(s)+ H(s)C(s)]
C(s)- G(s)H(s)CE) = G(s)R(s) C(s)[1- G(s)H(s)]= G(S)R(s)
Cs)_  G(s)

The transfer function for Positive feedback

R(s) 1-G(s)H(s)



‘ﬁ\ //g)\

SHANGHAI JIAO TONG UNIVERSITY

A2 7 3\ JR 5 B

i A A ? ’?
comparison point exchange

+
9 b A% 5 A0 A o AT Be

di0 ‘—de%

comparison point decomposition |

A + AG -B

3 P AT |G .
comparison point move forward B
+ -
A + AG — BG — G
4 HeAEE R A B -
ER

comparison point move backwatd

AG A AG
5 53 RIS 2 »lc - — 1 ~LS .
AG
. . AG
Pickoff point moved forward > ! G 23
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A AG G
6 S UY=L —T1 ™G ~
A T A
c . o —
Pickoff point moved backward G
A-B S Y- A-B
N > —>® >
7 R 50 R A+ A f A_B
3 H *? A B -8 -
Exchange comparison point andigickoff point B
A + _AG+AG, 4 1 AGL+AG
Transform into units Paralle © |
A+ B
o > > G > A [T] + B
9 PR EAA S 15t - —>s, —»?—» GG >
Transform into units feedback G |
A—» G »[G, |— C» A B
10 03 e : : |G TG
: : A AG AG,
Exchange Pickoff poini&G, L \Reo >
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3.2 Block Diagram

EX —l

R(s) + 1 c C(s)

b? > — +>® - ? | — — -

Solution: Employ Block Diagram Algorithms

(a) move comparison point A forwards, pickoff
point D afterwards

R | CoS |
R(s) + l 1 1 1B+ C [1 1 C(s)
-

R o ?*R—n:—

25
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3.2 Block Diagram

(b) Eliminate local feedback loop

R(s) + 1 1 C(s)
— > O —"|RCs 1 T ReCps +1 >
‘ R,C,s
(b)

Note: There are three local feedback loops in this examples

26



Y % & & A N TN i) ]
- A2 Vj" £ am "."I &

SHANGHAI JIAO TONG UNIVERSITY © M

3.2 Block Diagram

(C) Eliminate main feedback loop and get the result
R(s) 1 C(s)
_a .

R,CR,C,5% + (RiC; + RoCy + RiCy)s +1

Conclusion: The simplified method for block diagram
IS not unigue, we should make full use of all kinds of
transformation skills, and choose the simple path, In

order to achieve the simplest purposes.
27
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3.3 Signal-Flow Graph I\/Iodels

Signal-flow graph is a graphical representations of a
set of linear algebraic equations

Consider the following set of algebraic equations:

[ X, =X,
X, = ax +dx, +ex,
§ X3 = bX, + X
X, = CX,
| X5 = Xs

Signal-flow graph,representation :

b
| o
X3
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1. Definitions

Input node (or source node) [HIATFELIETIA] :nodes have output
branchs only,such as X, Xe.

Output node (or sink node) (¥ =a <] : nodes have input
branches only, such as x,.

Mixed Node [;E&¥ 4] : nodes have both output and input branchs,
another branch of the node type, such as x,, X;.

Transmission [f5%] : the gain between two nodes. For example: the
gain between x;, — x, is a, then the transmission is a.

Forward path [BIEEE] : the path that pass each node only once,
when a signal is transmitted from a input node to a output node. Such
as. X; — X, = X3 — Xy,.
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Overall Gain of forward path [AJEEEEEzE] © the gain product of
each branch on forward path, Example: overall gain of x;—x,—Xx;—X,
IS abc.

Loop [[El#%]) : aclosed path that originates and terminates on the
same nodes, and no node is met twice along the path.

Loop Gain [[EIf&#4%E ] : the gain product of each branch of the loop.
There are two loop in the graph, one is x,—x;—Xx, and the loop gain is
be, the other is x,—x,, also known as self-loop, whose gain is d.

Nontouching Loops [A#fll[E1#& ] : loops that have no common node
with each other. There is no such loops in the following graph.

- =
X3
CAN__ 20
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2. Properties and Algorithms of Signal-flow Graphs
Properties:

1. Each node represents a variable, and transmit the

accumulation of all input signals to each output branch.

2. A branch represents the functional relationship between one
signal and another. The direction of the arrow on the branch

represents the flow direction of the signal.

3. Mixed nodes will become output nodes by increasing a
branch with the gain of 1, and two ends of this branch represent

the same variables.

31
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Algorithms for Slgnal Flow Graph

X
(a) L a 2
a
X X
(b) . Q X2 —> 1o—§icz
b
XX a X b X3 9 ab  x,
(C) o—Pp—c——Pp——=c —> o—Pb o
ab
X]_ a X2 b X3 X ab X3 Xl 1—bC X3
oI o ey o WA
C bc
X1 a Xq ac
O\\ X3 C X4 o\\
(e) /°_.—O — /c X4
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3.3 Signal-Flow Graph I\/Iodels

Example: Make a simple derivation of the signal-flow in
graph (d):

I:-ﬁ' x:, ¥ . 3
S il e
(A &bﬂ

since:

eliminate intermediate variable x2, we have:

x—abx
° 1-bc *

33



b

d

G(s) |—» R(s) G(s) C(s)
R(s) *+ G(s) I<‘~~;(s)-:l E(s) (-3:(8) C(s)
" EY)
N(s)
R(s) + + é_'_ 1

R(GS) 1 E(s) G(s) Go(s) C(s)

H(s)
—H (s)
N(s)
R(s) + + g (s
—_— — G(s) Z(S) -:l E (s) S(S) 1 1 C(s)
C(s)
H(s)
—H (s)
R, (s) + Ci(s)
G141 () -
11 >(?+ R, (s) Gl_:l(S) Ci(s)
Gs1(s)
R (S) Go1(8)

R> (s)

ol

Gi12(s)

Gyo(s)

Cs(s)
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3.3 Signal-Flow Graphl\/lodels
3. Mason’s rule (Mason Formula)

The overall transmission (or overall gain) between input node and

output node could be determined by Mason formula:
1 N
G=—2pA,

Where: Ak
A =the system determinant.
A=1-(sum of all individual loop gains)

+ (sum of the gain products of all combinations of two nontouching
loops)

- (sum of the gain products of all combinations of three nontouching
loops)

=1-2L ,+2L, 2L o+

P =gain of the kih forward path ;
L., =gain product of m kinds of combinations in r nontouching loops
N =the total number of forward path;
A, = cofactor of the path;
35
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3.3 Signal-Flow Graph I\/Iodels

EX1 Determine C(s) / R(s) by using Mason formula.

Gy

g J
!
R(s) + + + ®_ C(S)

G, -1 » G ——>Gg—><i§)—>G4TG5—>
Hy

H»

Solution: Plot the signal-flow graph of the system

R(s) G /m 1 c(s)

Pp——o—Pp—o

_Hl

T, 36
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3.3 Signal-Flow Graph I\/Iodels

There are 4 independent loops in this graph:
L, =-G,H, L, =-G,G;H,
L, =-G,G,G.H, L, =-G,G,G,G.H,

The only nontouching loops are L, L,
hence, the determinat Is
A=1- (L, +L,+L;+L,) +L,L,

The 3 forward paths are:
P.=G,6,G,G,G, A=1
P,=G,L.G,G. A =1
P.= G,G,G, A=1

3 'L1

27




3 3 Slgnal -Flow Graph I\/Iodels

hence, the close-loop transfer function C(s) / R(s) is

C(s 1
% =G =Z(p1A1 +PA, +PA;)

G,G,G,6,6.+6,6,G,G,+6G,G,G,(1+G,H,)

1+G,H,+G,G.H, +G,G,G.H, +5,6,6,6.H, +G,H,G,G.H,

G
Gg
R(s) G / G, Gs 1 C(s)
o—P- < - < - < - I~ p—— —p—o
G, G v

_H2

38
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3.3 Signal-Flow Graph I\/Iodels

EX2: Determine C(s)/ R(s) by using Mason formula.

R(s) + Al +i_B 1|c+ _D C(s)

—'?*Eﬁ’@*cls >%—'Rz "o T

|
I_I_I
-

Solution: Plot the signal-flow graph of the system

a0 A I 1
RS) 1 A R Cs ¢ 1 D R C,5 1 C(s)
o——c—> P » o
Q/ U’
-1 1

39
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3.3 Signal-Flow Graph I\/Iodels

NOTES: node Cis in front of comparison node D, in order to
obtain output signal of node C, we need a branch with gain 1 to
separate signals of C and D.

There are 3 mdependent loops L,,L, and L,. Nontouching loops
are L,L,
-1 —1 -1 1
L = L, = L, = L,L
'"R,Cs ° R,.Cs ° RCs % RCSR,Cy
A=1-(L,+L,+L,;)+L,L,
1 1 1 1
+ + + +
R,Cs R,Css R,Cs R,CR,C,;

-1

There is only one forward path P, = _ A, =1
R,R,C,C.s
hence,
C(s) _ G- PA, _ 1
R(s) A  RR,C,C,s°+R,Cs+R,C,s+1

40



3 3 Slgnal -Flow Graph Models

Please write the C(s) / R(s) by using Mason formula in classroom

EXl - R(s) + E(s)

C(s)
>

> Gi(s) Q| G2(5)
0 b
+>® > Gy(s)

EX2: 9 Qo6 6
B(s)

41
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Chap.3 Dynamic Response

Review for this chapter with textbook in Chap3
® NOTE:
This chapter is important for this automatic control
principles
Homework is useful for understand these content.

42
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Chap.3 Dynamic Response

Homework(3)
 P117,118:

« Ex.3.19 3.20
« P125,126

 ExX.3.46 3.47
* Deadline: Sep.29,2012

NOTE: Sep.26.2012, Exercise class(Q/A) , Mr. Xu and Mr.Cal
will attendance this class.

43



Chapter 3 Dynamic Response

-3.4 Control System Stability Analysis

School of Aeronautics and Astronautics

Assoc. Prof. Xiao Gang
Email:
Tel:021-34206192
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Chapter 3 Dynamic Response

Three performance indexes:

Stability (FREM)
Steady-state characteristics (Fa7AS434%)
Dynamic characteristics (Eh7AS45M)

3.4 Control System

R(s) + E(s) C(s)
."‘
B(s) H ()



1. Concepts and Definitions
Stability of system is a prerequisite of regular
operation, and Is an important subject of control
theory.

(1). Concept of Stability

A linear time-invariant system is called stable if it
returns to Its original equilibrium position when
the disturbance effects disappears. By the contrary,
such a system is unstable.

We note that stability depends on zero input
response of the system.



2. The Necessary and Sufficient Conditions
for Stability

The definition shows that the stability a linear system only
depends on the inherent characteristics of this system,
while it is irrelevant with external conditions.

Consider a system with initial conditions setting to zero
and with an ideal unit pulse input (R(S)=1):
when t > 0, we have =0. This is equivalent toma

system whose output deviates from original equilibrium
position.

If the Impulse response of the system meets the
requirement: . »
limec) =0

t—ow

It means that the output converges to the original
equilibrium position, and the system is stable



Consider a closed-loop system with transfer function to be:

_ C(S) _ bmSm —i_bm—lsm_1 +"'+b13+b0 _ B(S) (m < n)
R(s) as"+a,_s" ' +---+as+a, D(s)

D(s)

Set the roots of the system characteristic equation
to be B [IEZREEY) and assume they are unequal with each other.

The output is then: FOE %R(s) _ %
S S

ajs+,8j

i1S— P = S_(Jj+ja)j) S_(Gj_ja)j)

By using Laplace inverse transforms we have the output under

1 1t 1 . k r

Ideal unit impulse: c(t) =Y ceP +> e’ (A coswt+B;sinw;t) |t =0)
i=1 j=1

It shows that a necessary and sufficient condition for a linear
system to be stable is that all the poles of the system transfer
function have negative real parts. That is, a system is stable if all
the poles of the transfer function are in the left-hand plane. s



3. The Routh-Hurwitz Stability Criterion

The system stability can be determined by the distribution of
characteristic roots, while the root i1s-determined by the equation
coefficients. The Routh-Hurwitz stability. method provides a answer
to the question of stability by considering the characteristic equation
of the system.

The characteristic equation in the Laplace variableis written as:

we note that al the coefficients of the left polynomial must have the
same sign (positive, for example). Also, it is necessary that all the
coefficients be nonzero. These requirements are necessary ‘out not
sufficient.

Steps of Routh-Hurwitz criterion:

Step 1: Order the coefficients of the characteristic equation into an
array or schedule as follows:

an’an—Z’a -

an—l’ an—3 y A



Step 2: Calculate corresponding elements and establish
the Routh table (or Routh array).

Consider a fifth-order system, the characteristic equation
IS:

a.s°+a,s" +a,;s’+a,s°+a,s+a, =0

the Routh-Hurwitz criterion table 1s




Step 3: Determine the system stability by the Routh-
Hurwitz criterion.

The Routh-Hurwitz criterion states that: (It is a necessary and
sufficient condition)

The system is stable if all values of the first column of the
Routh array are positive and it's unstable if there is any
negative value in the first column.

The number of roots of q(s) with positive real parts is.equal
to the number of changes in sign of the first column of the
Routh array.

EX: The system characteristic equation is:
Solution: the Routh array Is:
There is no change in sign of the first column,
which means no roots of characteristic
equation has a real part.
Thus, the system is stable.




EX: The system characteristic equation Is:

s° +4s% +10s+50=0

Determine the system stability- by Routh-Hurwitz
criterion.

Solution: the Routh array Is:

Because two changes in sign appears in the first
column, we find that two roots of the characteristic
equation lie in the right-hand plane, thus the systemIs

unstable. :



2. Two of Routh-Hurwitz criterion

(1) There is a zero In the first.column, but some other elements of
the row containing the zero in the first column are nonzero.

If only one element in the array Is zero, it may be replaced with a
small positive number, B, and we can complete the array element
calculations just as before.

EX: the characteristic equation is
Determine the system stability.
Solution: the Routh array Is:

Because two changes in sign appears
In the first column, we find that

two roots of the characteristic
equation lie in the right-hand plane,
thus the system is unstable. 10




Case 2. There isazero in the first column, and the other
elements of the row containing the zero are also zero.

This occurs when the characteristic equation has conjugate complex
roots or conjugate imaginary roots.

This problem is circumvented by utilizing the auxiliary polynomial.
The all zero row can be replaced by the equation confidents
obtained according to the derivation of the auxiliary pelynomial.

EX: the characteristic equation is
Determine the system stability.
Solution: the Routh array Is:

Establish a auxiliary equation with the elements above the all zero

(AN \(s) = s° +16 =0

we get a pair of conjugate imaginary roots, thus the system is
critical stable.

11



Determine K, T-to make the system stable
K(s+1)
s(Ts+1)(2s+1)

Solution:
The system characteristic equation is:

2T +(2+T)s* +(K+Ds+K =0

the Routh array is: oT

2+T
(2+T)(K+1)-2TK

2+T
K

To make the system stable, the first column element signs
should be all positive. Thus we have:

K>02T >0, (2+T)(K+1)—-2TK >0

And the value ranges are: 0< K <

T-2



T—2,K—o0
1 ———asymptotic line

T+2
<




EX. the characteristic equation IS RN E e

Determine the system stability and the number of the roots
between the plumb-line d and the imaginary axis.

Solution: the Routh array Is:

There is no change in sign of the first column, thus

Set and substitute into the original characteristic.eguation;
we have:

There Is one change in sign of the first column, thus there is one root
lies between the plumb-line EEEEnd the imaginary axis. 14



Exercise In Classroom

Use Routh’s stability criterion to determine
the range K for system Is stable.

S*+225° +10S°+2S+K =0

15
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3.5 Steady-state Analysis In
Time Domain

Three performance indexes:
— Stability

— Steady-state characteristics

— Dynamic characteristics

For a stable control system, Steady-state error (faa%iz
#)is a measurement of control accuracy. Steady-state
error Is also known as the steady-state performance.

Researches show that steady-state error Is relevant to
system structure and input signal. One of the task to
design a control system Is to minimize or even
eliminate the steady-state error on the prerequisite of
system stability.




3.5.1 The Basic Concepts of Error

Error and Steady-state Error
(1) Definition
two Kinds of definitions of error:

a. Definition in the input port: the difference of actual value
and expected value( B &¥i£{H) of the system output.

This method is often used in performance indexes analysis,.
However, it's Immesurable in some occasions, thus it only has
mathematical meanings.

b. Definition in the output port: the difference of input signal

and main feedback signal. e(t) = r(t) —b(t) ;




W E(s) = R(s)—B(s) =R(s) —C(s)H(s) = R(s)[1+ G(s)H (s)]

E(s) 1

Consider Rl Ry Iy AFyAL

and [OHE] —Error transfer function of the system
EIEVHE E (S) = D, (S)R(S)

Error of this definition is mesurable if actual system, thus it has phisical
meaning. We use definition in the input port to analyze and caculate system
error. Since error is a function of time, we have the expression in‘time
domain:

e(t) = L' [E(s)] = L@, (5)R(s)| =, (1) + e, (1)

and: — Dynamic component (ZIZ&S4r)

— Steady-state component (27570 &)



(2) Steady-state-error Bl : the steady-state component
of the error signal EXQJ

For a stable system, the system-dynamic process comes to
an end as time goes to infinity and EX®] will tend to zero.
According to Laplace final value theorem, the steady-state
error of a stable non-unit feedback system is:

e, = lime(t) = lim sE(s) = lim s R(s)

t—o0 s—0 s—»>0 14 G(S)H (S)

From the equation above, we know that the steady-state
error Is relevant to the input signal and the open-loop
transfer function structure.

described by once the
Input signal form is fixed.



How to understand the steady-state error is determined
by the system structure?

The open-loop transfer function [eIQ1gl8] can defined
with the Zeros/ Poles expression:

Krﬁ (S_j__ Zi)
G(s)H(s)=—2L2——

SVH(S—I— p;)

Where 4 and are the zeros/ poles of open-loop
transfer function , . Is the amplify coefficient.




How to understand the_steady-state error is determined
by the system structure?

then the steady-state error of a stable non-unit
feedback system is:
R(S)
e = I|m e(t) = I|m SE(s) = |SI_I’)T(]) 1o G(s H (<) G(S)H (5)

= lim sR(s)+ = lim sR(s)

s—0 P(T:[_]:(S.+.Zi) s—0
=1
s' T1(s+p))

j=v+1

1+




How to understand the steady-state error is determined
by the system structure?

So the poles number of open loop transfer
function ¥ ; the amplify coefficient P4 ;
and the input signal are determine
the steady-state error

We select three typical input signals to

analysis the
~ 1) Step Input

— 2) Ramp Input

—3) Acceleration Input [NSyES .

S



The Type for Control system with poles
number

The open-loop transfer function [EQLIO] is
defined with the Zeros/ Poles expression:

Krﬁ(s+zi)
G(S)H(s)=—+——

SVH(S+ p;)

When: [VE=e] . it is called as type-0 system;
V=%l , itis called as type-1 system;

Y4 |, it is called as type-2 system




EX: The open-loop transfer function is
20

COHE) = 05 10025 1)

Determine the steady-state error %
r(t)=1(t), r(t)=t
Solution:

when

: (0.55+1)(0.04s +1)
Ims——R(s) = lims——
s—»0 1+ G(s)H(s) s—0 (0.55+1)(0.04s+1)+20

R(S)

Unit Pulse function r(t) = 1(t), we have R(s)=1/s
(0.5s+1)(0.04s+1) 1

o —— — =~

e = liImMs$—— X —
s—»0 (0.55+1)(0.04s+1)+20 s
r(t) = t, we have R(s)=1/s?

: (0.55 +1)(0.04s + 1)
e, =lims————————e
s»0  (0.5s+1)(0.04s+1) + 20 10




2. Steady-state error under disturbance signal

Systems are often suffering a variety of disturbances.
Such as: load torque change,voltage and frequency
fluctuation, temperature change. Therefore, the steady-
state error under disturbance signals represent the anti-
disturbance capability of the system.

The Laplace transform expression of the output signal Is:

C(s) = D(s) + E(s)G(s) = D(s) + G(s)[R(s) — H(s)C(s)]

__ Dbk G
1+ G(S)H(s) 1+ G(s)H(s)

C(s) = R(s) 11



D(s)

R(S)=0 : prspme
E(s) = -H(s)C(s)

MO p)

T 1+G(S)H(s)

We take the absolute value as the error when system
reaches steady-state.

e,, = limsE(s) = lim— 1)

50 520 1+ G(S)H(S)

Assume that the disturbance is a step signal, that
is [SYAME we have:

e EORIOES
e, = I GOHO ~ GO) (G(O)H(0) >>D

ZUERN G (0) = lim G(s)

12



From the analysis above we note that:

The steady-state error caused by the
disturbance decreases as the forward path
coefficient in front of disturbance node
Increases.

Therefore, in order to reduce the steady>
state error caused by the disturbance, we
can increase the forward path coefficient{n
front of disturbance node, or we can insert a
Integral element In front of disturbance
node. However, these will decrease the
system stability.

13



3.5.2 Steady-state Error Coefficients
1. Steady-state error under different signals
(1) Step Input(MiBRKES)

1
e, =limsE(s) =lims- 1 1

50 s->0 1+ G(S)H(s) 'g:1+lsiir(1)G(s)H(s)

Kp T K@+ 7,S)(1+7,S)
>0 (1+T,S)(1+T,s)

As for a type-1 or higher system:
KQ+7,8)A+7,8)--(L+7,9) _

KIO = lim

550 sN (1+T,S)(L+T,8)---(L+T _S)

14



Therefore, the steady-state error can be
represented as:

the steady-state error of type-0 system
for a step input Is a constant. The
magnitude of % is inversely
proportional to The open-loo
amplification factor . #decreases
as g increases. However, the error will
not go to zero unless B4 goes to infinite
Thus the type-0 system Is also called the
discrepancy system. To reduce the
steady-state error M, we can increase
the open-loop amplification factor
on the prerequisite of system stability.

15



(2) Ramp Input(FBHEAEEHRN)
r(t)=t therefore steady-state error Is

1 1 1

e, =limsg(s) =lims- = lim
=0 SG(S)H (s)

=0 >0~ 1+G(s)H(s) s?

Definition: RYSIUEREOLIO] --velocity error constant

type-0 system: LS5l

type-1 system :
type-2 or higher system:

16



The output of type-1 system can track the velocity
input, but a error always exits. Therefore, B (A )
must have enough magnitude to constrain the error
as expected.

17



r(t)=t?/2 therefore:
steady-state error Is:

e, _IlmsE(s) lims-
-0 1+G(S)H(s)

(3) Acceleration Inputi)]l] IR EHIN)

1 1 .. 1
— =lim
3 550 §°G(S)H(s)

definition: MINEERSEOLIOl --acceleration erroreonstant
type-0 system:
type-1 system: [
type-2 system 33

type-3 or higher system:




The steady-state error of a type-2 system IS a
constant when there 1s an unit acceleration
Input.

19



Table Summary of stead

y-state error

Unit-
Unit-step Unit-ramp acceleration
Type Error Input Input input
Number constants
r(t) =t r(t) >
oo a0
1
0 K N
0 0 =

1. Steady-state error is relevant to input signal and system structure.
2. Ways to reduce or eliminate the steady-state error:
a. Increase the open-loop amplification factor K;

b. Increase the type number of G(s).

20




EX: Consider the following system, when the
system input is r(t) = [lQ], and
determine the corresponding steady-state errors.

Solution: This is a type-1 system, therefore:

And the steady-state errors are:

1

Esp = =0 e 1.1
ssP 1+ ssv—KV—2

21



While the errors determined by the steady-state
error coefficients would be zeros, constants or
Infinities, these values do not reflect the
regularity of error changing with time.

Therefore, the dynamic error coefficientwas
Introduced in some books.

22



EX: Consider the following system, when the
system Input Is r(t)=t and n(t)= —1(t), determine
the corresponding steady-state errors

Solution:

(1) The effect of control signal (Set N(s)=0)

E(6) 1 s(0Is+I1)(s+1)
R(s) 1+G(s) s(0.1s+1)(s+1)+10

5(0.1s +1)(s+1) oi:O.l

s—0 S(0.1s +1)(s+1) +10 &2

&sn = lims

23



(2) The effect of disturbance signal (Set R(s)
:O> 5
E(s) _ - s(s+1)

N(S)_1+ 5 2

s(s+1) 0.1s+1

€ = lIMS
s—0

(
s(s+1) 0.1s+1

Overall system error Is:
€ss = Esgr +65sn =0.1+0.5=0.6

24



Exercise in Classroom:

Open loop transfer function:

1 B 10 «p =
(1) G(S)H(S)—S(S+1)(S+2) Stability?
2 3(2s+)) -
( ) G(S)H(S)_ S(S—l)(S+2) Stablllty?

Calculate the Steady-state coefficients:

25
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3.6 Dynamic Analysis In
Time Domain

Three performance indexes:
— Stability
— Steady-state characteristics
System output:
C (t) = ¢, (t) + ¢4 (©)
C; (1) (or transient,component)
C. (1) - steady-state component



Dynamic response of the control system (or
transient response) refers to the system response
from the initial state to the steady-state.

only affects the

The accuracy of the system analysis dependson
the authenticity of mathematical model.

Dynamic response analysis is based on the system
stability.

Dynamic response of unstable system is divergent:



1. Dynamic Performance Index

The step input signal Is the easiest to generate and evaluate and is
usually chosen for time-domain performance tests.

1. overshoot (Mp A &£): the amount by which the system
output response proceeds beyond the desired response.

In the following formula, B0 is the peak value of the time
response, andB&& is the final value of the response.

2. Delay time (td ZEiREY[A]) : half of the time for the response
reaching the final value for the first time.

3. Peak Time (tp UEEHRS[E]) : the time for a system to respond to
a step input and rise to a peak response.

4. Rise time (tr _EFFEF[E]) : the time for the dynamic response
rising from zero to the steady-state value for the first time (choose
10-90% of the steady-state value, if there is no overshoot). *



5. Setting time (ts V%A [E]) (or transition process time): the
time required for the system to settle within a certain
percentage, A, of the input amplitude (or error band). This
band can be set as =2% or =5%.

R FEH A +0.05 87 +0.02




3.6.1 Performance of a first-order system

We expect the system to have a swift response.
That Is, the system output can change with the
control signal swiftly.

1 Introduction

cs_ 1 Moo 1 1

R(s) 1+Ts s(Ts+1) s 1+Ts

Unit-step response

t
c(t)=1-e T




Features:
(1) when t =T, the output reaches 0.632 of the magnitude of e ()

t

- T =0, the output is 0
T = oo, the output reaches the steady-state value
- T =T, the output reaches 0.632 of.the

magnitude of e () ;

JCIDES SMIUCE] - T = 3T, the output reaches 0.95 of the
magnitude of e () ;

- T = 4T, the output reaches 0.98 of the

magnitude of e () ;

(2) when t = 0, the tangent slope of the response curve is 1/T,the
Intersection of tangent with the steady-state value. the tangent'slope
of c(t) declines as t increases




(3) Setting time: t=3T (95%) , t=4T (98%)
(4) Delay time: t,;~0.69T

(5) Rising time:  t=0.22T

t=2.3T-0.1T=2.2T

(6) Eigenvalue i1s S=—1/T, and system has better
dynamic and steady-state performance as T declifjes.



the response of a first-order system

86.5% 95% 98.2% 99.3%

This i1s an exponential curve and the slope reaches the

maximum 1/T when t=0. If the response rises at such'a
speed, it would have reached the steady-state value at t=T,
however, the output reaches 0.632 of the steady-state value
by then in a practical system, and after 3T and 4T the
output reaches 0.95 and 0.98 of e_.. ¢



Unit impulse response

Unit pulse response is also
an exponential curve, and
Itis 1/T whent = 0.

We note that
the unit impulse response Is
the derivative of unit step response,

while the unit step response is the integral of unit impulse
response.

10



Unit ramp response

The response consists of two parts:
the steady-state component is (t-T),
and It is also a unit ramp,

but there iIs a delay time of T,

also It is the steady-state error;

the transient component is Te/T, and it attenuates to zero with the
attenuation rate of 1/T. The steady-state error declines as T

declines.
11



3.6.2 Transient Response of second-order system

Systems that can be described by second-order
differential equations are known as the second-order system.
In physical, a second-order system contains two separate
storage elements, such as inductor and capacitor.

1. standard form of the second-order system

12



set: and the standard form is:
0)2

do90s)= —————— 0
(s) S® + 24w S+ ]

— —undamping natural frequency (7 FH JE $k3% fadi %)
— —damp radio (FH/EEL)
characteristic equation of the second-order system IS:

(0<c <)

Two characteristic roots (closed-loop poles) are:

The features of roots are relevant to |4 , we will discuss the
following four cases.

13



the distribution of characteristic roots [s] in s-plane: EEinlncllld R —

A A A
Im [s] Im Im

1. Underdamping system: [(hS4S)

90=1-¢" /s

Thus the second-order system has a pair of conjugate complex
roots:

WAL o = co, - the attenuation coefficient

NP - the oscillation frequency




when the input is unit step,-the Laplace transform of the output is:

C(s) = On

s(s® + 2w S+ @°) (s+éw, ) +w: (s+lw,)* +w;

apply the inverse Laplace transform to the equation above, we have
the unit step response:

c(t):l—e_gmnt (cos ot + 5 2sinoadt):l— L e ' (y1-C&® cosmyt +Esinm,t
1-¢

e—c_‘,'(unt
=1- sin(w,t+6)

0 = arccos C 1

where:
The step response of a underdamping second-order system IS an

oscillatory attenuating curve. —

Oscillatory frequency is, and V=Sl is the envelope for the
dynamic response. The time constant of the envelop Is
The step response C(t) is always constrained by a pair of envelops
and the convergence rate Is determined by the value of time

constan , thus is also known as attenuation
coefficient.

15



System oscillate more sharply as declines. g is usually chosen as 0.5+
0.8.

16




2. dynamic response-performance indexes of second-order systems
(1) peak time

—gw t
sin(w t + 0)

1-¢7

IS the time that the response reaches the peak value for the
first time. we choose that:

Since:

we have:

Is inversely proportional to the imaginary part of the poles.
Consider that {'Is a constant and we note that Hjecllnes as the

poles go farther away from the real axis.
17



3.6.2 Transient-Response of second-order system
(2) Overshot ER

sin(o t+0)

1-¢7

It indicates that the overshot of a second-order system is relevant to
the damping ratio only, m declines as ¢ Increases.

18



(3) setting time.t,
The attenuation of the underdamping response can be
represented by the envelop-approximately.
( )

ﬂ
It indicates that the setting time is inversely proportional to

the real part of poles. Since gl is determined by I, If [§ IS
fixed, @ declines as mcreases Thus we can accelerate
system response speed without affecting system overshot




(4) Rise time

According to the definition,
—Sont

o(t )=1-——sin(w,t +0)=1

12

W have:

thus:

It Indicates that when IS fixed, the system response
IS more rapidly as underdamping natural frequency.

]
d — “%n o

20



Summary

=% L 100%

Damping ratio decrease: the rise time declines;the
setting time, the overshot and the steady-state erronall
Increase (K, decreases).

Damping ratio increase: the rise time increases;

Expectation: short rise time and setting time, small
overshot. The damping ratio Is usually chosen as 0.4-
0.8 In engineering and 0.707 1s known as the best
damping ratio.

21



2. Critical damping pg=n

Since m , we note that the system has
two equal real roots

S, =tw

As for a step Input, the Laplace transform of the output
IS: 2

n

output response:



2. Overdamping

We note that the system has two unequal real roots:

As for a step input, the Laplace transform of the output in partial

fractions is:
C(S)__+ [2(¢%-¢\¢P-1- 1)]_1 [2(¢° +¢\EP-1- 1]_1
S S+Clw, —m ¢ -1 S+lw, +w, ¢’

Apply inverse Laplace transform to the equation above and we
have the time domain response when the system is overdamped.

T, =~ +y¢° ~Do,
_(5_ 52 _1)a)n




4. Undamping

The system has a pair of virtual roots :

c(t)=1-cosm,t

~

N
Il
o

) —

This iIs a constant amplitude oscillation curve with
the average 1. 21



3.6.3 High-Order System

we often take a system higher than third-order as a high-order
system. It's usually approximated as a second-order system.

Consider a control system with a closed-loop transfer function:
C(s) M(s) b,s"+b, ;s""+

R(s) D(s) as"+a, s+

Step Response is :
klm[(s+zi)
ceg)=gr—"-7—"-"+—""—"—"—"
[1(s+ P[]+ (0 +jo )6 +(o - jo,) >

q r
Clty=a,+Y ae ™ +> e (B, cosw, 1 t+C, sinw,41-¢Ft)
i-1 i1

q r
=a,+y.ae " +> De M sin(w,1-¢7 t+e,)




High-order system step response:

1. Response type (in the case of oscillation) is determined by
the features of the closed-loop poles.

2. The shape of dynamic response curve is determined by both
the closed-loop zeros and poles.

3. The closed-loop poles affect system characteristics more
when they are closer to the imaginary axis.

Dominant Pole: The closed-loop poles closest to the imaginary axis
dominate the dynamic response.

Dipole: zeros and poles in the same location or quite close with each

other affect the dynamic response very little.
26



EX: Consider a closed-loop system with the

transfer function EONEEEECTIV
R(s) (s+60)(s* +20s +5200)

Closed poles are:
The ratio of the real part of P, and P, to the real part of
P;Is:

Thus P, and P, Is a pair of dominant poles and the step

response IS :
c(t) =1-0.696e ' sin(71.7t + 26.93°) — 0.686e "

Ignore the dynamic component correlated with P, , the
two solutions are close to each other.

c(t) =1—-0.696e " sin(71.7t + 26.93°)

27
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