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3.1  Transfer Function
Transfer function:  the basic and the most important concepts 
for classical automatic control .

The transfer function of a linear, stationary system is defined as 
the radio of the Laplace transform of the output variable to the 
Laplace transform of the input variable, with all initial conditions 
assumed to be zero.

If Input--r(t)，output--c(t). Transfer function was  define as：

where, C(s)=L[c(t)]——Laplace transform for output

R(s)=L[r(t)]——Laplace transform  for input

So, we can get:

The time response of control system c(t) equals the inverse 
Laplace transform of C(s) ：

 [R(s)H(s)]L[C(s)] c(t) -1
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3.1  Transfer Function

In general, the time domain mathematical model of the system-

Differential Equation is：

where， (i =0,1,2,…….n;  j =0,1,2…….m) are real number ，

which  is determined by the system structure parameters. The 

Laplace transformation are used to both sides : 

So, the control system transfer function of general expression:
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3.1 Transfer Function

Transfer Functions of Systems

1. Open loop transfer function

Definition：the ratio of feedback signal to error signal

Conclusion： Open loop transfer function is equal  the 
transfer function G(s) in forward path time to transfer 
function H(s) in feedback path. 5
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3.1 Transfer Function
The general situation ：

Where, K- the open loop amplification coefficient for closed-

loop system (also called the open loop magnification or open-

loop gain), is the important parameter to influence the system

performance.

when the feedback transfer function H（s）=1，the open loop

transfer function is equal to forward transfer function, that is

G( s ).
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3.1 Transfer Function
2. Closed-loop Transfer Function

Definition：the transfer function of the output 
and input when main feedback loop is 
connected, usually represented by (s).

3. Disturbance Transfer Function

Disturbance signal : outside of the system input function.
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3.1 Transfer Function
When input R（s）=0 

we hypothesis :

The disturbances signals can be restrained.

If disturbance signal N（s）=0

we hypothesis :

It shows that the transfer function of closed-loop system only 
has relationship with H (S) on, is not depend on 
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When R（s）、 N（s）are not equal to 

zero, the output C(s) is defined as:
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3.1 Transfer function

5. Error Transfer function

a)  Error transfer function with reference signal

If N(s)＝0，then 

that is so-called Error Transfer function.
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3.1 Transfer function

b) Error transfer function with disturbance signal ：

c) Total Error with R(s) and N(s)
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3.1  Transfer Function

Summary for Transfer Function ：
1) the transfer function is the system mathematical model (or link) 
in the complex number field, is the system characteristics 
description, reflect the linear time-invariant input of the system and 
output.
2) the transfer function depends only on the structural parameters 
of the system itself, and have no relationship with system outside 
input .
3) the transfer function is the complex variable S of the rational real 
fraction function, that is mn ( m, n are the highest order times of 
molecular and denominator)
4) If the input for the unit pulse function ，that is r(t)=(t)，
R(s)=L[r(t)]=1，so

This shows that at this time of the system C(t) and transfer 
function G (s) have single value corresponding relation, they can 
be used to characterize dynamic behavior of the system.
5) closed loop system transfer function G (s) and make the 
denominator for 0,  that is the characteristics of the system 
equation.

[G(s)]L[R(s)G(s)]Lc(t)
-1-1


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3.2 Block Diagram

Graph model- Block Diagram

Graph model have prominent advantage

• Intuitive

• Vivid

Graph model is the most important means in automatic 

control (AC)

Graph model  is always used to analyze complex system in 

engineering.



The Block Diagram Model

– which  consists of block, arrow, Differencing junction and pickoff point.

Pickoff point

3.2 Block Diagram



 A block diagram represents the flow of information 
and the function performed by each component in the 
system.

 Arrows are used to show the direction of the flow of 
information.

 The block represents the function or dynamic 
characteristics of the component and is represented by 
a transfer function.

 The complete block diagram shows how the functional 
components are connected and the mathematic 
equations that determine the response of each 
component.  

3.2 Block Diagram Model 



1. Basic Element of Block Diagram

（a） Signal lines ； （b） Branch point (also called pickoff point) ；

（c） comparison  points (also called summing point) ；（d）block ；

The system block diagram combine diagram and 

mathematical equations together, it describe the 

comprehensive characteristics  for a system.

3.2 Block Diagram
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3.2 Block Diagram
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3.2 Block Diagram
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Assemble all block diagrams above：

How can simplify this diagrams? 



3.2 Block Diagram

2. Algorithm of Block Diagram：

(1). series principle

Proof:

conclusion：G(s) is equal to the total series 

every link of the transfer function of the 

product  G(s) = G1(s) G2(s) Gn(s)
19
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3.2Block Diagram

(2). Parallel principle

Proof:

conclusion： the transfer function of parallel link is 
equal to the sum of all the transfer function .

G(s) = G1(s) + G2(s) + + Gn(s) 20
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3.2 Block Diagram

3、Feedback principle

Here the two blocks are connected in a feedback arrangement  

so that each feeds into each other. When the feedback B(s) is 

subtracted, we call it Negative feedback.

Note: negative feedback is usually required for system stability.

Proof:

Conclusion：The gain of a single-loop negative feedback 
system is given by the forward gain divided by the sum of 1 
plus the loop gain. 21
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3.2 Block Diagram

When the feedback is added 

instead of  subtracted, we call it 

Positive feedback. In this case, 

the gain is given by the forward 

gain divided by the sum of 1 

minus the loop gain. 
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3.2 Block Diagram

EX

Solution：Employ Block Diagram Algorithms

(a)  move comparison point A forwards, pickoff 

point D afterwards
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3.2 Block Diagram

(b)    Eliminate local feedback loop 
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3.2 Block Diagram

（C） Eliminate main feedback loop and get the result
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order to achieve the simplest purposes.
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3.3 Signal-Flow Graph Models
Signal-flow graph is a graphical representations of a 

set of  linear algebraic equations.

Consider the following set of algebraic equations：

Signal-flow graph representation ：
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1. Definitions

Input node (or source node) 【输入节点或源节点】:nodes have output 

branchs only,such as x1, x5.

Output node (or sink node)【输出节点或阱节点】: nodes have input 

branches only, such as x4. 

Mixed Node【混合节点】: nodes have both output and input branchs, 

another branch of the node type, such as  x2 , x3. 

Transmission【传输】: the gain between two nodes. For example: the 

gain between x1 → x2 is a, then the transmission is a. 

Forward path【前向通路】: the path that pass each node only once, 

when a signal is transmitted from a input node to a output node. Such 

as: x1 → x2 → x3 → x4.
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Overall Gain of forward path【前向通路总增益】: the gain product of 

each branch on forward path, Example: overall gain of x1→x2→x3→x4

is abc. 

Loop【回路】： a closed path that originates and terminates on the 

same nodes, and no node is met twice along the path. 

Loop Gain【回路增益】: the gain product of each branch of the loop. 

There are two loop in the graph, one is x2→x3→x2 and the loop gain is 

be, the other is x2→x2, also known as self-loop, whose gain is d. 

Nontouching Loops【不接触回路】: loops that have no common node 

with each other. There is no such loops in the following graph.
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2. Properties and Algorithms of Signal-flow Graphs

Properties:

1. Each node represents a variable, and transmit the 

accumulation of all input signals to each output branch.

2. A branch represents the functional relationship between one 

signal and another. The direction of the arrow on the branch 

represents the flow direction of the signal. 

3. Mixed nodes will become output nodes by increasing a 

branch with the gain of 1, and two ends of this branch represent 

the same variables.
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3.3 Signal-Flow Graph Models

Example: Make a simple derivation of the signal-flow in 
graph (d):

since: x2 = ax1 + cx3

x3 = bx2

eliminate intermediate variable x2, we have: 
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3.3 Signal-Flow Graph Models
3. Mason’s rule (Mason Formula) 
The overall transmission (or overall gain) between input node and 

output node could be determined by Mason formula:

Where: 

Δ = the system determinant. 

Δ = 1 - (sum of all individual  loop gains) 

+ (sum of the gain products of all combinations of two nontouching
loops) 

- (sum of the gain products of all combinations of three nontouching
loops) 

+ ......      =1­ 

= gain of the kth forward path ; 

= gain product of m kinds of combinations in r nontouching loops 

N = the total number of forward path; 

Δk = cofactor of the kth path;
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3.3 Signal-Flow Graph Models
EX1 Determine C(s) / R(s) by using Mason formula.

Solution：Plot the signal-flow graph of the system
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3.3 Signal-Flow Graph Models

There are 4 independent loops in this graph：
L1 = -G4H1 L2 = -G2G7H2

L3 = -G6G4G5H2                         L4 = -G2G3G4G5H2

The only nontouching loops are L1 L2

hence, the determinat is

Δ=1-（L1 + L2 + L3 + L4）+ L1 L2

The 3 forward paths are：
P1= G1G2G3G4G5 Δ1=1

P2= G1L6G4G5 Δ2=1

P3= G1G2G7 Δ3=1-L1
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3.3 Signal-Flow Graph Models

hence，the close-loop transfer function C(s) / R(s) is 
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3.3 Signal-Flow Graph Models

EX2： Determine C(s) / R(s) by using Mason formula.

Solution：Plot the signal-flow graph of the system
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3.3 Signal-Flow Graph Models
NOTES：node C is in front of comparison node D, in order to 
obtain output signal of node C,  we need a branch with gain 1 to 
separate signals of C and D.

There are 3 independent loops L1,L2 and L3. Nontouching loops 
are L1L2 ：

There is only one forward path 

hence,    
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3.3 Signal-Flow Graph Models

EX1：

EX2：

+

_

( )R s ( )C s

( )B s

( )E s +
1( )G s 2 ( )G s

_

+

_

( )R s ( )C s

( )B s

( )E s +
1( )G s 2 ( )G s

_

Please write the C(s) / R(s) by using Mason formula in classroom 



42

Chap.3 Dynamic Response

Review  for this chapter with textbook in Chap3

NOTE: 

This chapter is important for this automatic  control 

principles 

Homework is useful for understand these content.
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Chap.3 Dynamic Response

Homework(3)

• P117,118: 

• Ex.3.19  3.20

• P125,126

• Ex.3.46  3.47

• Deadline: Sep.29,2012

NOTE: Sep.26.2012, Exercise class(Q/A) , Mr. Xu and Mr.Cai
will attendance  this class. 
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Chapter 3 Dynamic Response

Three performance indexes：

Stability （稳定性）

Steady-state characteristics（稳态特性）

Dynamic characteristics （动态特性）

3.4 Control System Stability Analysis

( )R s ( )C s
( )G s

( )B s

( )E s



( )H s
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1.  Concepts and Definitions

Stability of system is a prerequisite of regular 

operation, and is an important subject of control 

theory. 

(1)． Concept of Stability

 A linear time-invariant system is called stable if it 

returns to its original equilibrium position when 

the disturbance effects disappears. By the contrary, 

such a system is unstable.

 We note that stability depends on zero input 

response of the system.



4

 2. The Necessary and Sufficient Conditions
for Stability 

 The definition shows that the stability a linear system only 
depends on the inherent characteristics of this system, 
while it is irrelevant with external conditions. 

 Consider a system with initial conditions setting to zero 
and with  an ideal unit pulse input          (R(S)=1).

when t > 0, we have          =0. This is equivalent to a 
system  whose output deviates from original equilibrium 
position.

If the impulse response of the system meets the 
requirement:

It means that the output converges to the original 
equilibrium position, and the system is stable
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t
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 Consider a closed-loop system with transfer function to be: 

 Set the roots of the system characteristic equation

to be                        and assume they are unequal with each other.

 The output is then:

 By using Laplace inverse transforms we have the output under 

ideal unit impulse:

 It shows that a necessary and sufficient condition for a linear 

system to be stable is that all the poles of the system transfer 

function have negative real parts. That is, a system is stable if all 

the poles of the transfer function are in the left-hand plane.
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 3. The Routh-Hurwitz Stability Criterion
 The system stability can be determined by the distribution of 

characteristic roots, while the root is determined by the equation 
coefficients. The Routh-Hurwitz stability method provides a answer 
to the question of stability by considering the characteristic equation 
of the system.

 The characteristic equation in the Laplace variable is written as:

 we note that al the coefficients of the left polynomial must have the 
same sign (positive, for example). Also, it is necessary that all the 
coefficients be nonzero. These requirements are necessary but not 
sufficient.

Steps of Routh-Hurwitz criterion:

 Step 1: Order the coefficients of the characteristic equation into an 
array or schedule as follows:
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 Step 2: Calculate corresponding elements and establish 

the Routh table (or Routh array).

 Consider a fifth-order system, the characteristic equation 

is: 

 the Routh-Hurwitz criterion table is 

001

2

2

3

3

4

4

5

5  asasasasasa

00
0

00

0
0

0

2

1

21
1

0

1

2121
1

1

0

1

01

2

1

2421
1

2

4

0514

2

4

2534

1

3

024

4

135

5

B
C

BC
Ds

B

BAAB
Cs

a
A

aA
B

A

AaaA
Bs

a

aaaa
A

a

aaaa
As

aaas

aaas

























8

Step 3: Determine the system stability by the Routh-
Hurwitz criterion.

 The Routh-Hurwitz criterion states that: (It is a necessary and 
sufficient condition)

 The system is stable if all values of the first column of the 
Routh array are positive and it's unstable if there is any 
negative value in the first column.

 The number of roots of q(s) with positive real parts is equal 
to the number of changes in sign of the first column of the 
Routh array.

 EX: The system characteristic equation is:

 Solution: the Routh array is:

There is no change in sign of the first column, 

which means no roots of characteristic

equation has a real part. 

Thus, the system is stable.
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 EX: The system characteristic equation is:

 Determine the system stability by Routh-Hurwitz 

criterion.

 Solution: the Routh array is:

 Because two changes in sign appears in the first 

column, we find that two roots of the characteristic 

equation  lie in the right-hand plane, thus the system is 

unstable.
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 2. Two Special Cases of Routh-Hurwitz criterion

 (1) There is a zero in the first column, but some other elements of 

the row containing the zero in the first column are nonzero.

 If only one element in the array is zero, it may be replaced with a 

small positive number, , and we can complete the array element 

calculations just as before.

 EX: the characteristic equation is

 Determine the system stability. 

 Solution: the Routh array is:

 Because two changes in sign appears

in the first column, we find that 

two roots of the characteristic 

equation  lie in the right-hand plane,

thus the system is unstable.
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 Case 2. There is a zero in the first column, and the other 

elements of the row containing the zero are also zero.

 This occurs when the characteristic equation has conjugate complex 

roots or conjugate imaginary roots.

 This problem is circumvented by utilizing the auxiliary polynomial. 

The all zero row can be replaced by the equation confidents 

obtained according to the derivation of the auxiliary polynomial.

 EX: the characteristic equation is 

Determine the system stability. 

 Solution: the Routh array is:

 Establish a auxiliary equation with the elements above the all zero 

row.

 we get a pair of conjugate imaginary roots, thus the system is 

critical stable.
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 Determine K, T to make the system stable

 Solution: 

 The system characteristic equation is:

 the Routh array is:

 To make the system stable, the first column element signs 

should be all positive. Thus we have:

 And the value ranges are: 
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 EX. the characteristic equation is 

 Determine the system stability and the number of the roots 
between the plumb-line             and the imaginary axis.

 Solution: the Routh array is:

 There is no change in sign of the first column, thus the system is 
stable.

 Set                 and substitute into the original characteristic equation, 
we have:

 There is one change in sign of the first column, thus there is one root 
lies between the plumb-line           and the imaginary axis.
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Exercise  in Classroom

 Use Routh’s stability criterion to determine 

the range K for system is stable.
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Homework

 Page 124

– 3.38

– 3.39

– 3.40 ( Matlab Tool ) 

 Deadline 15.OCT.2012

GOOD HOLIDAY!

16
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3.5 Steady-state Analysis in 

Time Domain

 Three performance indexes：
– Stability

– Steady-state characteristics

– Dynamic characteristics 

 For a stable control system, Steady-state error (稳态误
差)is a measurement of control accuracy. Steady-state 
error is also known as the steady-state performance.

 Researches show that steady-state error is relevant to 
system structure and input signal. One of the task to 
design a control system is to minimize or even 
eliminate the steady-state error on the prerequisite of 
system stability.
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Error and Steady-state Error

 (1) Definition 

 two kinds of definitions of error: 

 a. Definition in the input port: the difference of actual value 
and expected value(真值&理论值) of the system output.

 This method is often used in performance indexes analysis. 
However, it's immesurable in some occasions, thus it only has 
mathematical meanings. 

 b. Definition in the output port: the difference of  input signal 
and main feedback signal. 

3.5.1 The Basic Concepts of Error 
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or

Consider              

and              ——Error transfer function of the system

we have:

Error of this definition is mesurable if actual system, thus it has phisical 
meaning. We use definition in the input port to analyze and caculate system 
error. Since error is a function of time, we have the expression in time 
domain:

and： —— Dynamic component（动态分量）

—— Steady-state component （稳态分量）
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 (2) Steady-state error : the steady-state component 

of the error signal . 

 For a stable system, the system dynamic process comes to 

an end as time goes to infinity and  will tend to zero. 

According to Laplace final value theorem, the steady-state 

error of a stable non-unit feedback system is:

 From the equation above, we know that the steady-state 

error is relevant to the input signal and the open-loop 

transfer function structure. 

 The steady-state error is determined by the system 

structure described by open-loop transfer function once the 

input signal form is fixed.

)(tess

)(ssesse

)(tets

)()(1

)(
lim)(lim)(lim

00 sHsG

sR
sssEtee

sst
ss








How to understand the  steady-state error is determined 

by the system structure?

 The open-loop transfer function                   can defined 

with the Zeros/ Poles expression:

Where         and           are the zeros/ poles of open-loop 

transfer function ,        is the amplify coefficient.  
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How to understand the  steady-state error is determined 

by the system structure?

 Let                    

then the steady-state error of a stable non-unit 

feedback system is:
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How to understand the  steady-state error is determined 

by the system structure?

 So the poles number of open loop transfer 

function      ;  the amplify coefficient       ; 

and the input  signal            are determine 

the steady-state error 

 We select three typical input signals to 

analysis the

– 1）Step Input

– 2） Ramp Input

– 3） Acceleration Input 8

v K
)(sR

sse

sse

2

1
)(

s
sR 

3

1
)(

S
sR 

S
sR

1
)( 



The Type for Control system with  poles 

number

 The open-loop transfer function                     is 

defined with the Zeros/ Poles expression:

When:               , it is called as type-0 system;

, it is called as type-1 system;

, it is called as type-2 system
9
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EX: The open-loop transfer function is 

Determine the steady-state error       when

r(t)=1(t),  r(t)=t

Solution:
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 2. Steady-state error under disturbance signal

Systems are often suffering a variety of disturbances. 

Such as: load torque change, voltage and frequency 

fluctuation, temperature change. Therefore, the steady-

state error under disturbance signals represent the anti-

disturbance capability of the system. 

 The Laplace transform expression of the output signal is:
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R(s)＝0 ：

E(s) = -H(s)C(s)

We take the absolute value as the error when system 

reaches steady-state.

Assume that the disturbance is a step signal, that 

is              ,we have:

and：
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From the analysis above we note that: 

The steady-state error caused by the 
disturbance decreases as the forward path 
coefficient in front of disturbance node 
increases.

Therefore, in order to reduce the steady-
state error caused by the disturbance, we 
can increase the forward path coefficient in 
front of disturbance node, or we can insert a 
integral element in front of disturbance 
node. However, these will decrease the 
system stability.
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3.5.2  Steady-state Error Coefficients

1. Steady-state error under different signals

（1）Step Input(阶跃信号)

Definition： ----position error constant。

As for a type-0 system:

As for a type-1 or higher system:
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 Therefore, the steady-state error can be 
represented as: 

 the steady-state error of type-0 system 
for a step input is a constant. The 
magnitude of        is inversely 
proportional to the open-loop 
amplification factor        .       decreases 
as       increases. However, the error will 
not go to zero unless        goes to infinite. 
Thus the type-0 system is also called the 
discrepancy system. To reduce the 
steady-state error     , we can increase 
the open-loop amplification factor       
on the prerequisite of system stability.

（please see page 72, Fig3-12（a））
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(2)   Ramp Input(斜坡/速度输入)

r(t)=t  therefore             steady-state error is

Definition:                            --velocity error constant

type-0 system:        

type-1 system :

type-2 or higher system:   
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.

The output of type-1 system can track the velocity 

input, but a error always exits. Therefore, (     )    

must have enough magnitude to constrain the error 

as expected. 
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
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（ please see
page 72, Fig3-
12（b））
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(3)  Acceleration Input(加速度输入)

r(t)=t2 /2    therefore:

steady-state error is:

definition:                          --acceleration error constant

type-0 system:        

type-1 system:

type-2 system:

type-3 or higher system: 
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（please see page 72, Fig3-12（c））



19

.

The steady-state error of a type-2 system is a 

constant when there is an unit acceleration 

input.
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Table Summary of steady-state error

 1. Steady-state error is relevant to input signal and system structure. 

 2. Ways to reduce or eliminate the steady-state error: 

 a. increase the open-loop amplification factor K; 

 b. increase the type number of G(s).

0

0

1
1
K

Type 

Number

Error 

constants

Kp  Kv Ka

Unit-step

input

Unit-ramp

input
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input


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0 0
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EX: Consider the following system，when the 

system input is r(t) =       ,        and

determine the corresponding steady-state errors.

Solution：This is a type-1 system, therefore:

And the steady-state errors are:
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 While the errors determined by the steady-state 

error coefficients would be zeros,  constants or 

infinities, these values do not reflect the 

regularity of error changing with time. 

 Therefore, the dynamic error coefficient was 

introduced in some books.
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 EX：Consider the following system，when the 

system input is r(t)=t and n(t)= －1(t), determine 

the corresponding steady-state errors.

Solution：

(1)  The effect of control signal（Set N(s)=0）

( )R s ( )C s

( )B s

( )E s



)(sN




)1(

5

ss 11.0

2

s

10)1)(11.0(

)1)(11.0(

)(1

1

)(

)(









sss

sss

sGsR

sE

1.0
1

10)1)(11.0(

)1)(11.0(
lim

20







 ssss

sss
se

s
ssn



24

(2)   The effect of disturbance signal（Set R(s)

＝0）

Overall system error is：
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Exercise in Classroom:

 Open loop transfer function:

(1) 

(2)  

Calculate the Steady-state coefficients:

25
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3.6  Dynamic Analysis in 

Time Domain

Three performance indexes：

– Stability

– Steady-state characteristics

– Dynamic characteristics

System output: 

c (t) = ct (t) + cs (t) 

ct (t) - dynamic component (or transient component) 

cs (t) - steady-state component 
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 Dynamic response of the control system (or 

transient response) refers to the system response 

from the initial state to the steady-state.

 Input signal only affects the steady-state 

component. 

 The accuracy of the system analysis depends on 

the authenticity of mathematical model.

 Dynamic response analysis is based on the system 

stability. 

 Dynamic response of unstable system is divergent.
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 1. Dynamic Performance Index

 The step input signal is the easiest to generate and evaluate and is 

usually chosen for time-domain performance tests.  

 1. overshoot (Mp 超调量):  the amount by which the system 

output response proceeds beyond the desired response.

In the following formula,        is the peak value of the time 

response, and        is the final value of the response.

 2. Delay time（td 延迟时间）: half of the time for the response 

reaching the final value for the first time.

 3. Peak Time（tp 峰值时间）: the time for a system to respond to 

a step input and rise to a peak response.

 4. Rise time（tr 上升时间）: the time for the dynamic response 

rising from zero to the steady-state value for the first time (choose 

10-90% of the steady-state value, if there is no overshoot).

%100
)(c

)(c)t(c P

P 





)( Ptc

)(c
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5. Setting time（ts 调整时间） (or transition process time): the 
time required for the system to settle within a certain 
percentage, △, of the input amplitude (or error band). This 
band can be set as ±2% or ±5%.
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rt

pt

st
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误差带  ： 05.0 或 02.0
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3.6.1  Performance of a first-order system

 We expect the system to have a swift response. 

That is, the system output can change with the 

control signal swiftly.

 1  Introduction

 Unit-step response
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 Features: 

 (1) when t = T, the output reaches 0.632 of the magnitude of ess(∞) 

 - T = 0, the output is 0 

 - T = ∞, the output reaches the steady-state value

 - T = T, the output reaches 0.632 of the 
magnitude of ess(∞) ;

 - T = 3T, the output reaches 0.95 of the 
magnitude of ess(∞) ;

 - T = 4T, the output reaches 0.98 of the 
magnitude of ess(∞) ;

 (2) when t = 0, the tangent slope of the response curve is 1/T, the 
intersection of tangent with the steady-state value. the tangent slope 
of c(t) declines as t increases
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 (3) Setting time: ts=3T（95％）， ts=4T（98％）

 (4) Delay time: td≈0.69T

 (5) Rising time: tr≈0.22T

 ∴ tr=2.3T-0.1T=2.2T

 (6) Eigenvalue is S=－1/T，and system has better 

dynamic and steady-state performance as T declines.

Ttetc d
T

t

d 69.05.01)( 


Ttetc T

t

1.01.01)( 


Ttetc T

t

3.29.01)( 

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 the response of a first-order system  

 This is an exponential curve and the slope reaches the 
maximum 1/T when t=0. If the response rises at such a 
speed, it would have reached the steady-state value at t = T, 
however, the output reaches 0.632 of the steady-state value 
by then in a practical system, and after 3T and 4T the 
output reaches 0.95 and 0.98 of ess.

0

1

0.632

( )c t

tT 2T 3T 4T 5T

63.2%

86.5% 95% 98.2% 99.3%

斜率=1/T
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Unit impulse response

 Unit pulse response is also 

an exponential curve, and 

it is 1/T when t = 0. 

 We note that 

the unit impulse response is 

the derivative of unit step response, 

while the unit step response is the integral of unit  impulse 
response.
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Unit ramp response

output：

The response consists of two parts: 

the steady-state component is (t-T),

and it is also a unit ramp, 

but there is a delay time of  T, 

also  it is the steady-state error;

the transient component is Te-t /T, and it attenuates to zero with the 
attenuation rate of  1/T. The steady-state error declines as T 
declines. 
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 3.6.2 Transient Response of second-order system 

 Systems that can be described by second-order 

differential equations are known as the second-order system. 

In physical, a second-order system contains two separate 

storage elements, such as inductor and capacitor.

 1. standard form of the second-order system

T
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set： and the standard form is:

－－undamping natural frequency(无阻尼振荡角频率)；

－－damp radio （阻尼比）

 characteristic equation of the second-order system  is: 

 Two characteristic roots (closed-loop poles) are: 

The features of roots are relevant to     , we will discuss the 
following four cases.
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the distribution of characteristic roots [s] in s-plane:

 1. Underdamping system:



 Thus the second-order system has a pair of conjugate complex 

roots: 

 Where:                       - the attenuation coefficient  

 - the oscillation frequency 
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when the input is unit step, the Laplace transform of the output is:

apply the inverse Laplace transform to the equation above, we have 
the unit step response:

where：

 The step response of a underdamping second-order system is an 
oscillatory attenuating curve. 

 Oscillatory frequency is      , and                  is the envelope for the 
dynamic response. The time constant of the envelop is            . 
The step response C(t) is always constrained by a pair of envelops 
and the convergence rate is determined by the value of time 
constant            , thus          is also known as attenuation 
coefficient.
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System  oscillate more sharply as           declines.      is usually chosen as 0.5—
0.8.
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2. dynamic response performance indexes of second-order systems

(1) peak time

since:

we have: 

 is the time that the response reaches the peak value for the 
first time. we choose that: 

 Since: 

 we have:

is inversely proportional to the imaginary part of the poles. 
Consider that ζ is a constant and we note that      declines as the 
poles go farther away from the real axis.
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 3.6.2 Transient Response of second-order system 

（2）Overshot

The maximum overshot occurs at the peak time, thus we substitute

into 

And we have:

It indicates that the overshot of a second-order system is relevant to 

the damping ratio only,        declines as ζ increases.
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(3) setting time ts

The attenuation of  the underdamping response can be 
represented by the envelop approximately.

（ ）

We have 

When          ，ignore the factor 

It indicates that the setting time is inversely proportional to 
the real part of poles. Since       is determined by     , if     is 
fixed,     declines as       increases.  Thus we can accelerate 
system response speed without affecting system overshot.
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(4) Rise time 

According to the definition,

since:  

We have：

thus:

It indicates that when         is fixed, the system response 
is more rapidly as underdamping natural frequency 
increases.(                            )

n

rt

1)tsin(
1

e
1)t(c rd2

tn

r 










0
 rnte


 rdt

d

rt


 


2
1   nd





21

Summary

 Damping ratio decrease: the rise time declines; the 
setting time, the overshot and the steady-state error all 
increase (Kv decreases).

 Damping ratio increase: the rise time increases; 

 Expectation: short rise time and setting time, small 
overshot. The damping ratio is usually chosen as 0.4-
0.8 in engineering and 0.707 is known as the best 
damping ratio.
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 2. Critical damping

 Since           , we note that the system has 
two equal real roots     

 As for a step input, the Laplace transform of the output 
is:

 output response:
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 2. Overdamping
 We note that the system has two unequal real roots:

 As for a step input, the Laplace transform of the output in partial 
fractions is:

 Apply inverse Laplace transform to the equation above and we 
have the time domain response when the system is overdamped.

 output response:
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4．Undamping

The system has a pair of virtual roots :

This is a constant amplitude oscillation curve with 
the average 1.
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 we often take a system higher than third-order as a high-order 

system. It's usually approximated as a second-order system. 

 Consider a control system with a closed-loop transfer function: 

 Step Response is :

01

1n

1n

n

n

01

1m

1m

m

m

asasasa

bsbsbsb

)s(D

)s(M

)s(R

)s(C


















s
jsjsps

zsk

sC
q

j

r

k

kkj

m

i

i
1

)()((()(

)(

)(

1 1

22

1 







 



 





)1sin1cos()(
2

1 1

2

0 tCtBeeaatC kkk

q

j

r

i

kkk

ttp

j
kkj 


  

 



)1sin(
1 1

2

0 k

q

j

r

i

kk

t

k

tp

j teDeaa kkj 


  
 



3.6.3 High Order System



26

 High-order system step response:

 1. Response type (in the case of oscillation) is determined by 

the features of the closed-loop poles. 

 2. The shape of dynamic response curve is determined by both 

the closed-loop zeros and poles.

 3. The closed-loop poles affect system characteristics more 

when they are closer to the imaginary axis.

 Dominant Pole: The closed-loop poles closest to the imaginary axis 

dominate the dynamic response.

 Dipole: zeros and poles in the same location or quite close with each 

other affect the dynamic response very little.
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EX: Consider a closed-loop system with the 
transfer function

Closed poles are：

The ratio of the real part of P1 and P2 to the real part of 
P3 is :

Thus P1 and P2 is a pair of dominant poles and the step 
response is :

Ignore the dynamic component  correlated with P3 , the 
two solutions are close to each other.
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