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ABSTRACT 
 

This paper discusses the problem of data fusion of Automatic 

Dependent Surveillance Broadcast and Traffic Alert and Collision 

Avoidance System. First, the 3-dimensional trajectory is generated by 

aircraft movement model. Contrasting to traditional aircraft surveillance 

research focusing on data precision with known noise and fixed sampling 

period, the estimation of time-varying noise is guaranteed by Variational 

Bayesian method, which is the basis for failure prediction and adjustment of 

sampling period. Second, the interacting multiple model is used for local 

filtering. Two situations are considered during fusion, including scenarios 

before and after injecting Automatic Dependent Surveillance Broadcast 

failure modes. Then, data fusion’s benefit for improving the false alarm and 

leak alarm is analyzed by calculating the time until closest point of 

approach between aircraft. Finally, simulations results are given to verify 

the validity of the algorithm proposed in this paper. It shows that the 

dynamic noise can be estimated within a tolerable error range and the 

sampling period can be adjusted according to the noise level. Compared to 

single Traffic Alert and Collision Avoidance System, Automatic Dependent 

Surveillance Broadcast system and current statistical model based fusion 

system, the root mean squared error, alarm condition can be optimized and 

failure at information level can be detected. 

 

Keywords: variable sampling period VB-IMM, data fusion, ADS-B failure 

mode, benefit analysis 
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I. INTRODUCTION 
 

The problem of position estimation of aircraft within 

airspace is known as target tracking, which is a 

fundamental requirement for surveillance systems. TCAS 

is known as Traffic Alert and Collision Avoidance 

System. It interrogates nearby aircraft equipped with 

TCAS through Mode S data link, processes returned data 

and displays potential dangerous targets. Automatic 

Dependent Surveillance Broadcast (ADS-B) is an 

important part of the Future Air Navigation System 

(FANS). It is designed to provide air traffic avoidance 

and management especially in remote areas, complex 

terrain and ocean areas. TCAS sends interrogation signal 

with the frequency of 1030 MHz and receives a signal 

from another transponder with the frequency of 1090 

MHz. ADS-B broadcasts information with the frequency 

of 1090 MHz as well. ADS-B’s integrity category, 

integrity level and navigation accuracy of surveillance 

information depend on the performance of GNSS. If 

ADS-B is utilized only, GNSS information’s loss caused 

by interferences or other factors will lead to catastrophic 

consequences. The above-mentioned issues put forward 

the demand for research of TCAS and ADS-B’s fusion, 

which can lay the foundation of airspace interval 

compression, flight path optimization [1] and 

coordination avoidance among manned, unmanned aerial 

vehicles and general aviation aircraft. 
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Julio L. R. da Silva applied data fusion techniques to 

ADS-B and Radar Sensors with Kalman Filter [2]. Gui 

Ping He [3], Yun Song Lin [4] studied ADS-B and TCAS 

hybrid surveillance. They focused on data precision 

through x-y trajectory, and current statistical (CS) model 

is the foundation. But it is not appropriate for civil 

aircraft when in cruise. Roberto Sabatini and Robert H. 

Chen introduced Sense-and-Avoid (SAA) system [5, 6]. 

Extended Kalman Filter and common interacting multiple 

model (IMM) [7] algorithm were used to estimate the 

intruder’s state vector. Federal Aviation Administration 

(FAA) and Thales Company focused on the IMM 

tracking models. They designed the Constant Velocity 

(CV), Constant Acceleration (CA) and Constant Turning 

(CT) models for the surface tracking [8], and finally took 

IMM to improve precision. IMM is one of the most 

cost-effective schemes for targets with multiple 

kinematic behaviors. But most methods are based on the 

assumption of a priori knowledge of measurements and 

dynamic model parameters, including the noise statistics, 

which is not practical. Roxaneh Chamlou [9] put forward 

the layout of future studies about TCAS, ADS-B fusion 

and performance evaluation. The concept of noise 

parameters was mentioned, but without research on 

detailed algorithms. The consideration of online 

estimation and adaptive adjustment of measurement noise 

is necessary. The classical approaches about adaptive 

noise filtering can be divided into Bayesian, maximum 

likelihood, correlation and covariance matching methods. 

Variational Bayesian (VB) method [10] has been 

developed for a wide range of models to perform 

approximate posterior inference at low computational 

cost and adapts quickly in a large scope compared with 

the sampling methods. Simo Sarkk’s VB method [11] 

approximated the joint posterior distribution of the state 

and the noise variance by a factorized free form 

distribution, where on each step the sufficient statistics 

are estimated with a fixed-point iteration of Kalman filter. 

The forgetting factor ρ is a constant in this method. ρ=1 

corresponds to stationary variance and a smaller value 

corresponds to a stronger assumed time-fluctuation.               

Therefore, the factor ρ’s dynamic adjustment and CS 

model based Kalman filter are introduced in the VB 

estimation in this paper. Meantime, the sampling period 

of VB-IMM is adjusted adaptively according to 

fluctuation of noise variance. In addition, Busyairah Syd 

Ali [12] analyzed and listed ADS-B system’s failure 

modes. There is few research about benefit analysis of 

fusion system after failures injected [13]. This paper 

conducts benefit analysis about alarm condition, and is 

organized as follows: Section II presents mathematical 

formulations used for variable sampling VB-IMM 

(VSVB-IMM). Section III compares the tracking 

performance and alarm condition of CS model algorithm, 

fixed sampling VB-IMM (FSVB-IMM) and VSVB-IMM. 

Conclusions are presented in IV. 

 

II. COMPUTATIONAL METHOD 
 

2.1 Markov jump linear system and tracking model 

The target dynamics are modeled in Cartesian 

coordinate system. The Markov jump linear system [14]: 

( 1) ( ) ( ) ( )j jX k k X k k              (1) 

( ) ( ) ( )j jz k H X k k            (2) 

where the state ( )X k is an n-dimensional vector, the 

observation z(k) is an m-dimensional vector and the 

subscript  1,  2,  . . . ,  j S s  denotes the models. 

The matrix functions ( ), ( ),k Hk  are known. The 

variable ( )j k  is a zero-mean white Gaussian process 

noise with known variance: 

[ ( )] 0jE k  , [ ( ) ( ) ]  ( , )T

j j jE t k Q t k            (3) 

( , )t k is the Kronecker delta function. The variable 

( )j k is an independent Gaussian measurement noise 

with zero-mean and variance to be estimated: 

[ ( )] 0jE k  , [ ( ) ( ) ]  ( , )T

j j jE t k R t k             (4) 

k

jM  denotes the flight model j at time k. The model 

dynamics are modeled as a finite Markov chain with 

known model-transition probabilities from model i at time 

k-1 to model j at time k: 
1 1Prob{ | } { | }k k k k

ij j i j iM M P M M                (5) 

where 
1

0 1, 1, ,
s

ij ij

j

i j S 


    .                 

The initial state distribution of the Markov chain is 

1[ ,... ]s   , where 
1

0 1, 1,
s

j j

j

j S 


    . 

The model set S describes the target motion states. 

CV, CA and CS are typical models. The IMM algorithm 

in this paper includes the above three models. The 

longitude, latitude, and altitude are processed 

separately. ( )X k  is the target state at time k. It can be a 

3-dimensional vector consisting of position, velocity and 

acceleration in each direction.  

Model 1: CV model for non-maneuvering flight segments 

is described in equation (6), T is the sampling period. 

( ) [   ]X k x x x ,

1 0

( ) 0 1 0

0 0 0

T

k

 
 

 
 
  

                (6) 

Model 2: CA model for maneuvering flight segments 

with the following transition matrix (7): 
21 / 2

( ) 0 1

0 0 1

T T

k T

 
 

   
 
 

                    (7) 

Based on CA and singer model, Hong Ren Zhou 

[15] proposed CS model and pointed out that the noise of 

maneuvering target acceleration should be corrected with 

Rayleigh distribution. The acceleration is assumed as 

non-zero and finite in the neighborhood of current 

acceleration. The model is described in equation (8-12). 

Model 3: Current statistical model: 

         1 j j jX k k X k k a k               (8) 

( ) ( ) ( )j jz k H X k k                          (9) 
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1 ( 1  (  2 (1

  ( ) 0 1 (1 ) ,  (

) ) )

)) (1

0 0 1

T T

T T

T T

T T e T T e

k e k T e

e e

 

 

 

   

 



 

 

         
   

         
      

 (10) 

where  j k , ( )j k  are zero-mean, independent 

Gaussian white noise.  j k is state transition matrix. 

 j k is input matrix. T is sampling period.  is 

maneuvering frequency. 

The process noise matrix   2Q k 2 σ Qa , Q is a 

matrix containing variable period T. 
2σa is the 

maneuvering acceleration variance.  

11 12 13

12 22 23

13 23 33

q q q

Q q q q

q q q

 
 


 
  

                  (11) 

The most common treatment for maneuvering 

acceleration variance: 

  

2

max

2

max

4
σ (a (k | k 1)),  a 0

4
σ k|k 1

ˆ

ˆ a ,  a<0

a

a

a if

a f











   


   



              (12) 

where maxa , maxa are upper and lower bounds of 

acceleration, (k | 1ˆ k )a   is the acceleration estimation. 

In the filtering, ˆ ( 1/ 1)X k k   is obtained by 

ˆ ˆ ˆ( 1/ 1) ( 1/ ) ( 1)[ ( 1) ( 1) ( 1/ )]X k k X k k K k Z k H K X k k           (13) 

1

( 1) [ ( ) ( / ) ( ) ( )] ( 1) *

[ ( 1) ( 1/ ) ( 1) ( 1)]

T T

T

K k F k P k k F k Q k H k

H k P k k H k R k 

   

    
       (14) 

where ( 1)K k  is a gain matrix. From equation (13, 14) 

we can draw the conclusion that the adjustment of ( )Q k  

or ( 1)R k   can improve the accuracy of estimation. 

Binbin Li [16] used Gaussian membership function 

of fuzzy control theory to improve the CS model. It sets 

 
 

2

2

f x, y,σ 1

x y

e 




 
, where x, y, 2

 and  are the 

position’s input, the current position’s estimation, the 

variance of innovation and a constant respectively. The 

value x y is larger when there is a larger maneuvering, 

then  f x, y,σ 1 .The system tracks with a larger variance. 

On the contrary, the system tracks with a smaller 

variance,  f x, y,σ 0 ,    2Q k 2aσ Q*f x, y,σa . 

 

2.2 VB-IMM algorithm 
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Figure 1 System frame diagram 

 

In this section, a brief review of the IMM algorithm 

for maneuvering target tracking is given, and the VB 

approximation is applied to estimate unknown noise 

variance. The IMM algorithm runs CV, CA and CS model 

filters in parallel. The state is obtained by a weighted sum 

of the estimates from all filters with different motion 

models. The local optimized value is obtained through 

variable sampling IMM (VSIMM), fixed sampling IMM 

(FSIMM), CS model algorithm based on the TCAS, 

ADS-B data and VB noise estimation. The global optimal 

value is achieved under the optimal information fusion 

criterion. The results from three different algorithms will 

be used as inputs of TCAS logic and then the time until 

closest point of approach (tau) is calculated. Finally, false 

alarm and leak alarm are counted for statistical analysis. 

Firstly, ADS-B Latency should be considered in the 

data preprocessing. Busyairah Syd Ali [17] developed a 

comprehensive framework to evaluate ADS-B 

performance using the London Terminal Maneuvering 

Area (LTMA) as a case study. It introduced the ADS-B 

latency model, which incorporates delay in the navigation 

system (Δa), delay within the interfacing between the 

navigation system and the ADS-B emitter (Δb), delay in 

the ADS-B emitter (Δc), propagation delay (Δd), and 

delay in other aircraft or ground station (Δe). The results 

show that 66.7% of the aircraft’s latency is less than one 

second. 
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Figure 2 ADS-B latency model 

 

The aircraft clocks can be calibrated by GPS 

satellites which use atomic clocks. Therefore the TCAS 

and ADS-B data can both be time stamped. The time 

synchronization in TCAS and ADS-B data fusion 

proposed by Yude NI [18] is improved. In a unified 

coordinate system, ADS-B data is obtained based on 

TCAS’s time: 

,TCAS ADS Bt t
k k N

T

 
   

                      (15) 

1

1

( ) ( ) ( )
k

ADS B TCAS ADS B ADS B i i TCAS ADS B

i

Z t Z t v T v t t k T    



       (16) 

Where TCASt , ADS Bt  are the time stamp of TCAS and 

ADS-B data. T is the interval of aircraft speed’s 

intensive sampling. iv is the speed in sampling point. 

( )ADS B TCASZ t is the extrapolated ADS-B data. If 

TCAS ADS Bt t  is bigger than 2 seconds. The ADS-B data 

in that moment will be ignored and only TCAS data will 

be used in collision avoidance logic. But the probability 

is very low.  

Then, the formal algorithm flow starts. The 

unknown measuring noise variance is estimated by VB 

algorithm [19], which is described by equation 

(17-25). (0,1]i   is a forgetting factor and is sensitive 

to the convergence of noise estimation. It should be 

related to the fluctuation and amplitude of the noise 

variance in the previous step. Inspired by Gaussian 

membership function, the following equation (17) is 

defined. 1 2 3, ,c c c  are constants, 3c maintains the stability, 

1c represents the effect of variance in the previous step, 

2c represents the effect of variance fluctuation. 1(3,1)km   

is acceleration estimation.  

Step 1. Parameters of predicted distribution 
2

1 2 3( 1) ( ( 1) ( 2))

100000

i i ic k c k k c

i e

  


     

            (17) 

1 1( ) ( ) (3,1)k k km k m k m

               (18) 

1( ) ( )T

k k kP k P k Q

                          (19) 

, 1, , 1,...,k i i k i i d 

               (20) 

, 1, , 1,...,k i i k i i d  

                         (21) 

Step 2. Update 

Set
0 0 (0)

, , , ,, , 1/ 2 , , 1,...,k k k k k i k i k i k im m P P i d            , 

d is the dimension of measurement vector. Then iterate 

the following equations for N steps: 
( ) ( ) ( ) ( ) ( )

,1 ,1 , ,( / ,..., / )n n n n n

k k k k d k ddiag                  (22) 

( 1) ( ) 1( ) ( )n T T n

k k k k k k k k k k km m P H H P H y H m          (23) 

( 1) ( ) 1( )n T T n

k k k k k k k k k kP P P H H P H H P               (24) 

( 1) ( 1) 2 ( 1)

, ,

1 1
( ) ( )

2 2

n n n T

k i k i k k k i k k k iiy H m H P H          (25) 

and set 
( ) ( ) ( )

, , , ,N N N

k i k i k k k km m P P    . 

The above estimated noise variance is used for IMM 

filtering [20], which is shown in equation (26-36). 

Notations: ijp is transition matrix. ˆ ( | )jx k k , ( | )jP k k  

are the state estimation and covariance in mode-matched 

filter j at time k. 0
ˆ ( | )jx k k , 0 ( | )jP k k are the mixed initial 

condition for mode-matched filter j at time k. ˆ( | )x k k , 

( | )P k k are the combined state estimation and covariance. 

( )j k is the mode probability at time k. | ( | )i j k k  is the 

mixing probability at time k. ( )j k  is the likelihood 

function of filter j. ( ) N

j kk  is the estimation of 

measurement noise variance by VB algorithm. 

Step 3. Calculation of mixing probabilities 

, si j M  , jc is a normalization factor. 

| ( 1| 1) (1/ ) ( 1), ( 1)i j j ij i j ij i

i

k k c p k c p k        (26) 

Step 4. Interaction 

The mixed system state estimation is given by 

0 |
ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)j i i j

i

x k k x k k k k                  (27) 

0

0 0 |

ˆ( 1 | 1) { ( 1 | 1) [ ( 1 | 1)

ˆ ˆ ˆ( 1 | 1)] [ ( 1 | 1) ( 1 | 1)] } ( 1 | 1)

j i i

i

T

j i j i j

P k k P k k x k k

x k k x k k x k k k k

        

         


(28) 

Step 5. Filtering 

sj M  , the measurement noise variance is 

obtained by VB estimation rather than a predetermined 

constant in the common IMM algorithm. The state 

estimation and covariance matrix is obtained by running 

each filter: 

0
ˆ ˆ ˆ( | 1) ( 1) ( 1| 1) ( 1) ( 1)j j j j jx k k k x k k k a k             (29) 

where
ˆ ( 1) 0,    model

ˆ ( 1) 0,  if ,  model

j

j

a k if CS

a k CV CA

 


 
. 

( ) ( ) ( | 1)                        (residual)j jr k z k z k k      (30) 

ˆ( | 1) ( ) ( | 1)            (prediction)j j jz k k H k x k k     (31) 

S ( ) ( ) ( | 1) ( ) ( ) (covariance)T

j j j j jk H k P k k H k k     (32) 
1( ) ( | 1) ( ) S ( )               (filter gain)T

j j j jK k P k k H k k     (33) 

0( | 1) ( 1) ( 1 | 1) ( 1)

( 1) ( 1) ( 1)

T

j j j j

T

j j j

P k k k P k k k

k Q k k

        

     
       (34) 

ˆ ˆ( | ) ( | 1) ( ) ( )j j j jx k k x k k K k r k                 (35) 

( | ) ( | 1) ( ) ( ) ( )T

j j j j jP k k P k k K k S k K k              (36) 

Step 6. Calculation of likelihood function 
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The likelihood function is calculated by the residual 

measurement and covariance, d is the dimension of 

measurement vector. 

1

1/2
/2

1 1
( ) ( ( ) : 0, ( )) exp( ( ) S ( ) ( ))

2(2 ) S ( )

T

j j j j j j
d

j

k N r k S k r k k r k
k

    (37) 

1

1
( ) ( ) , ( )

s

j j j j j

j

k k c c k c
c




                     (38) 

Step 7. Combination of state estimation and 

covariance 

ˆ( | )x k k , ˆ( | )P k k are estimated by a weighted sum of 

the estimations from all filters, , si j M   

ˆ ˆ( | ) ( | ) ( )j j

j

x k k x k k k                       (39) 

ˆ ˆ( | ) { ( | ) [ ( | ) ( | )]

ˆ ˆ[ ( | ) ( | )] } ( )

j j

j

T

j j

P k k P k k x k k x k k

x k k x k k k

   




       (40) 

 

2.3 Variable sampling period VB-IMM and fusion 

Variable sampling period [21]: FAA issued advisory 

circular about Airworthiness Approval of ADS-B Out 

Systems in 2010 [22]. The concept of Navigation 

Accuracy Category for Position (NACP) specifies the 

accuracy of the aircraft’s horizontal position information 

(latitude and longitude) transmitted from the aircraft 

avionics. The ADS-B equipment derives a NACP value 

from the position source’s accuracy output, such as the 

HFOM from the GNSS. The NACP specifies with 95% 

probability that the reported information is correct within 

an associated allowance. 

The sampling period can increase appropriately 

when estimated variance by VB algorithm is relatively 

small. So the simulation sampling period is 1s in the 

NACP 10 and 11 in Table 1. The sampling should be 

intensive when the estimated variance increases and 

meantime the intruder is closer. The sampling period in 

simulation is 0.8s in the NACP 9 and 0.6s in the NACP 8, 

7, 6. When the intruder is far away, sampling period is 

restored to 1s. EPU is Estimated Position Uncertainty. 

 

Table 1 NACP Values 

NACP Horizontal Accuracy 

Bound 

Simulation 

sampling period 

0 EPU ≥ 18.52 km (10nm) 1s 

1 EPU < 18.52 km (10nm) 1s 

2 EPU < 7.408 km (4nm) 1s 

3 EPU < 7.408 km (4nm) 1s 

4 EPU < 1852 m (1nm) 1s 

5 EPU < 926 m (0.5nm) 0.8s 

6 EPU < 926 m (0.5nm) 0.6s 

7 EPU < 185.2 m (0.1nm) 0.6s 

8 EPU < 92.6 m (0.05nm) 0.6s 

9 EPU < 30 m 0.8s 

10 EPU < 10 m 1s 

11 EPU < 3 m 1s 

 

Optimal Information Fusion Criterion [23]: There are 

unbiased estimations of L sensors, 1,ˆ , ,ix i L  . The 

estimation error covariance matrix ij, , 1,P i j L  is 

obtained. The fusion is performed according to matrix 

weighted linear minimum variance criterion, 0

1

ˆ ˆ
L

i i

i

x A x


 , 

where    
1

1 1

1, , T T

LA A e P e e P


   , Ai is an n-order square 

matrix, P is a block matrix with ijP  as the (i, j) element. 

In is an n-order identity matrix,  
T

n ne I I . The 

optimal fusion estimation of error covariance matrix is 

 
1

1

0

TP e P e


 . In this paper, L=2. Fusion equations: 

 1 2

1
1 1[ , ] [ , ]TCAS AD

T

S B

Te eA A PA A e P






               (41) 

1 1 2 2
ˆ ˆ ˆ ˆ ˆ

f TCAS TCAS ADS B ADS BX A x A x A x A x              (42) 

where  11 12

3 3

21 22

ˆ ˆ, cov( , ), , 1,2,  
T

ij i j

P P
P P x x i j e I I

P P

 
    
 

. 

ˆ
TCASx , ˆ

ADS Bx  are obtained from the results of variable 

sampling VB-IMM, fixed sampling VB-IMM and CS 

model algorithm. 

 

III. RESULTS AND DISCUSSION 

 
3.1 Experimental setup 

The 3-dimensional trajectory can be generated by 

aircraft motion model, Microsoft Flight Simulator or 

Flight gear cockpit shown in figure 1. The real TCAS 

measurements are height, azimuth and distance. The 

position estimation error of intruders includes the 

position error of own aircraft and the measurement error 

of TCAS. In order to facilitate modeling and simulation, 

unified conversion is conducted to express as latitude, 

longitude and height with different noises. The estimation 

accuracy of VSVB-IMM, FSVB-IMM, CS model 

algorithm are analyzed. It is essential to calculate tau 

combining the core processing model of TCAS. Then 

statistics of false alarm, leak alarm and benefit analysis 

for fusion system were conducted.  

The simulation parameters are set as follows: Flight 

experience is 3000s, fixed sampling period T=1s, the 

variable sampling period is adaptive. Own flight position: 

29°00'00"N, 103°12'00"E, 4800m height. Intruder’s 

initial position: 29°00'00"N, 106°00'00"E, 300m height. 

TCAS’s observation noise standard deviation is 50 m/s, 

ADS-B’s observation noise standard deviation is 

time-varying. The aircraft climbs gradually from 300m, 

then cruises at constant height. 

 

3.2 Flight parameter estimation and IMM 

probability transformation 

The aircraft maneuvers during step 12500 and step 

12650, Figure 3 shows the acceleration’s true value and 

estimation from different directions of the aircraft by 

VSVB-IMM and FSVB-IMM. 
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Figure 3 Estimation of aircraft motion parameters 

 

Figure 4 is the model probability transformation. 

The mode 1 is CV, mode 2 is CA, mode 3 is CS model. 

The maneuver occurs between step 12500 and 12650 in 

the nose direction (longitude direction). The CS and CV 

probability increase rapidly in the longitude direction and 

CV probability drops. The CA model is dominant later 

because the main form of motion is CA in this interval. 

Another maneuver occurs at step 13000. 

 

 
Figure 4 IMM probability transformation 

 

3.3 Sampling period and tau calculation based on 

TCAS model  

Figure 5 is the result distribution of adaptive 

sampling period. The red line is the period of FSIMM and 

green line is the period of VSIMM, which is adjusted 

mainly between 3s and 6s. 

 

 
Figure 5 Sampling period superimposed distribution 
 

After geodetic and Earth-Centered Earth-Fixed 

coordinate conversion, the local trajectory is filtered by 

VSVB-IMM and the fusion results are given as inputs to 

TCAS logic. The relative position of aircraft is calculated 

and the time until closest point of approach is estimated 

based on trend extrapolation method. It is vital to 

anticipate conflict and make RA decision based on tau. 

Figure 6 is the result of tau calculation by different 

systems, which includes true value in blue line. It’s the 

superimposed distribution after 60 Monte Carlo 

experiments. 

 

 
        Figure 6 Tau of each system 

 

3.4 Noise estimation by Variational Bayesian  

In the simulation, TCAS contains fixed noise, whose 

amplitude of standard deviation is 50 m/s. The     

oscillatory behavior may result from the modeling of 

dynamics, reaction effect of initial conditions and 

calibration errors. And the sinusoidal oscillation noise is 

injected into ADS-B system. Its amplitude of standard 

deviation is 40 m/s. Figure 7 and Figure 8 are the online 

variance estimation of measurement noise. The green line 

represents the true value and red line represents the 

estimation. Forgetting factor is a sensitive parameter for 

VB. It is adaptive as described in 2.2. The number of 

iteration N in each cycle is 30 in this paper. Although 

there are some deviations and hysteresis of estimated 

noise, IMM can run normally in the range of acceptable 

root mean squared error (RMSE). 

 

 
Figure 7 Noise estimation of ADS-B 
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Figure 8 Noise estimation of TCAS 

 

3.5 Statistics of root mean squared error 

The RMSE is calculated according to 
1

( ) ( ) 2 2
k

1
ˆ[ ( ) ] , 1, 2...

M
i i

k k

i

RMSE x x k step
M

          (43) 

where M is the number of Monte Carlo, k is the steps of 

simulation. Figure 9 is the statistical result of 60 Monte 

Carlo experiments. The RMSE of fusion system is 

smaller than TCAS and ADS-B subsystem. The 

VSVB-IMM is superior to FSVB-IMM as purple line 

with triangles is the smallest most of the time. The same 

conclusion can be drawn from the numerical result in 

Table 2. 

 

3.6 False alarm, leak alarm analysis 

The number of false alarm and leak alarm during the 

TA (tau in 35-45s) and RA (tau<35s) interval is analyzed. 

The false alarm is defined that the estimated tau is 

smaller than theory alarm time in sampling point and 

exceeds the threshold (can be set to a constant 1s). Leak 

alarm is defined that the estimated tau is bigger than 

theory alarm time in sampling point and exceeds the 

threshold (1s). In Table 2, from the horizontal 

comparisons of the same sampling conditions, like first 

three columns and last three columns, or vertical 

comparisons from different sampling conditions, like 

column 2,5, column 3,6. We can draw the conclusion that 

fusion can reduce the incidence of false alarm, leak alarm 

in the TA and RA interval. Leak alarm and delayed alarm 

compress avoidance response time of system and pilot, 

thus seriously affect flight safety. Therefore, a more 

accurate alarm time can improve the system security and 

bring forward earnings. 

 

 
Figure 9 Root mean squared error of statistics in each direction

 

Table 2 Performance comparison of various algorithms 

Case 
Longitude 

RMSE,m 

Latitude 

RMSE,m 

Height 

RMSE,m 

False 

alarm(RA) 

Leak 

alarm(RA) 

False 

alarm(TA) 

Leak 

alarm(TA) 

FIMM-TCAS 29.8684 26.0890 26.6773 376 330 291 302 

FIMM-ADS-B 16.5508 16.3195 15.9397 198 195 185 152 

FIMM-Fusion 14.2319 13.1903 13.1918 132 151 158 148 

VIMM-TCAS 19.0613 17.9499 17.9382 226 189 221 173 

VIMM-ADS-B 11.1504 10.3604 10.7635 165 156 158 130 

VIMM-Fusion 9.1981 8.3820 8.1759 73 72 123 88 

The unit of alarm: frequency, FIMM-TCAS: fixed sampling IMM under TCAS measurement, FIMM-ADS-B: fixed 

sampling IMM under ADS-B, FIMM-Fusion: fixed sampling IMM after fusion, V represents variable sampling period. 

 

3.7 Failure mode injection and benefit analysis 

Donald McCallie [24] conducted security analysis of 

the ADS-B implementation in the next generation air 

transportation system. This paper focuses on TCAS, 

ADS-B data fusion by VSVB-IMM and benefit analysis. 

The typical failure modes are injected, including data loss, 

step, ramp and oscillation.  

The original 3-dimensional information changes into 

Gaussian white noise. It’s a simulation about ADS-B 

navigation data loss. The possibility of large transition of 

aircraft’s location, speed and acceleration does not exist. 

The state change before and after in the physical system 

is finite. When the noise estimation by VB diverges as 

shown in Figure 10, the trajectory RMSE diverges as well. 

Fusion system can locate failure [25] like data loss and 

aberration by detecting the noise estimation. Then it takes 

measures to adjust fusion weight and ensures the 

availability, security of the hybrid surveillance system. 
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Although the precision is worse than before, it may 

downgrade to TCAS’s accuracy and false alarm, leak 

alarm condition. The system stability is guaranteed, and it 

brings positive gains. Meantime, the false alarm and leak 

alarm in VSVB-IMM are better than FSVB-IMM. 

 

 
Figure 10 Noise estimation of ADS-B 

 

Figure 11 to 14 show the system response when step 

and ramp failure are injected into ADS-B’s information. 

Step mode includes an abrupt change without notification. 

When there are sudden jump in the signal, unavailability 

of the data link connection and human errors. Figure 12 

proves that fusion can guarantee the system stability and 

alarm condition is superior to single system. Modern 

aircraft integrated GNSS and inertial navigation system 

can provide position, speed and data quality identification 

for ADS-B transmission. Ramp can simulate signal 

failure in fusion system or even serious drift of INS when 

GNSS is lost. In Figure 13 and 14, the ADS-B alarm 

condition deteriorates after ADS-B failures. But the 

fusion system can utilize the useful information of both 

TCAS and ADS-B measurements, ensure that the alarm 

condition is optimal compared to TCAS system and 

ADS-B system. 

 
Figure 11 Noise estimation of ADS-B  

 

 
Figure 12 Statistics of false alarm, leak alarm 

 

 
Figure 13 Noise estimation of ADS-B 

 

 
Figure 14 Statistics of false alarm, leak alarm 
 

VI. CONCLUSION 
 

This paper fuses 3-dimensional trajectory by 

VSVB-IMM. The estimated noise by VB method is the 

basis for failure prediction and adjustment of sampling 

period. It is proved that VSVB-IMM based fusion is 

superior to FSVB-IMM and CS model algorithm by 

analyzing RMSE and alarm condition after typical 

ADS-B failure modes injected. In some conditions, 

although the ADS-B information deteriorates, the fusion 

system can ensure the normal operation, which reduces 

the probability of system failure. Those are the positive 

gains brought by fusion. Next it’s necessary to improve 

TCAS and ADS-B system failure library, consider the 

implicit failure caused by information fusion and propose 

solutions of locating the failure source reversely. 
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